Molecular basis for Duarte and Los Angeles variant galactosemia. 1997

S D Langley, and K Lai, and P P Dembure, and L N Hjelm, and L J Elsas
Department of Pediatrics, Division of Medical Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.

Human orythrocytes that are homozygous for the Duarte enzyme variant of galactosemia (D/D) have a characteristic isoform on isoelectric focusing and 50% reduction in galactose-1-phosphate uridyltransferase (GALT) enzyme activity. The Duarte biochemical phenotype has a molecular genotype of N314D/N314D. The characteristic Duarte isoform is also associated with a variant called the "Los Angeles (LA) phenotype," which has increased GALT enzyme activity. We evaluated GALT enzyme activity and screened the GALT genes of 145 patients with one or more N314D-containing alleles. We found seven with the LA biochemical phenotype, and all had a 1721C-->T transition in exon 7 in cis with the N314D missense mutation. The 1721C-->T transition is a neutral polymorphism for leucine at amino acid 218 (L218L). In pedigree analyses, this 1721C-->T transition segregated with the LA phenotype of increased GALT activity in three different biochemical phenotypes (LA/N, LA/G, and LA/D). To determine the mechanism for increased activity of the LA variant, we compared GALT mRNA, protein abundance, and enzyme thermal stability in lymphoblast cell lines of D and LA phenotypes with comparable genotypes. GALT protein abundance was increased in LA compared to D alleles, but mRNA was similar among all genotypes. When LA/D and D/D GALT biochemical phenotypes were compared to N/N GALT phenotypes, both had 50%, as compared to 21%, reduction in GALT activity in the wild type (N/N) after exposure at identical initial enzyme activity to 50 degrees C for 15 min. We conclude that the codon change N314D in cis with the base-pair transition 1721C-->T produces the LA variant of galactosemia and that this nucleotide change increases GALT activity by increasing GALT protein abundance without increasing transcription or decreasing thermal lability. A favorable codon bias for the mutated codon with consequently increased translation rates is postulated as the mechanism.

UI MeSH Term Description Entries
D008297 Male Males
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010375 Pedigree The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition. Family Tree,Genealogical Tree,Genealogic Tree,Genetic Identity,Identity, Genetic,Family Trees,Genealogic Trees,Genealogical Trees,Genetic Identities,Identities, Genetic,Tree, Family,Tree, Genealogic,Tree, Genealogical,Trees, Family,Trees, Genealogic,Trees, Genealogical
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D005260 Female Females
D005693 Galactosemias A group of inherited enzyme deficiencies which feature elevations of GALACTOSE in the blood. This condition may be associated with deficiencies of GALACTOKINASE; UDPGLUCOSE-HEXOSE-1-PHOSPHATE URIDYLYLTRANSFERASE; or UDPGLUCOSE 4-EPIMERASE. The classic form is caused by UDPglucose-Hexose-1-Phosphate Uridylyltransferase deficiency, and presents in infancy with FAILURE TO THRIVE; VOMITING; and INTRACRANIAL HYPERTENSION. Affected individuals also may develop MENTAL RETARDATION; JAUNDICE; hepatosplenomegaly; ovarian failure (PRIMARY OVARIAN INSUFFICIENCY); and cataracts. (From Menkes, Textbook of Child Neurology, 5th ed, pp61-3) Galactokinase Deficiency Disease,Galactose-1-Phosphate Uridyl-Transferase Deficiency Disease,UDPglucose 4-Epimerase Deficiency Disease,Classic Galactosemia,Deficiency Disease, Galactokinase,Deficiency Disease, Galactose-1-Phosphate Uridyl-Transferase,Deficiency Disease, UDP-Galactose-4-Epimerase,Deficiency Disease, UDPglucose 4-Epimerase,Epimerase Deficiency Galactosemia,GALE Deficiency,GALK Deficiency,GALT Deficiency,Galactokinase Deficiency,Galactose Epimerase Deficiency,Galactose-1-Phosphate Uridyltransferase Deficiency,Galactose-1-Phosphate Uridylyltransferase Deficiency,Galactosemia,Galactosemia 2,Galactosemia 3,Galactosemia III,Galactosemia, Classic,Hereditary Galactokinase Deficiency,UDP-Galactose-4-Epimerase Deficiency,UDP-Galactose-4-Epimerase Deficiency Disease,UDPGlucose Hexose-1-Phosphate Uridylyltransferase Deficiency,UTP Hexose-1-Phosphate Uridylyltransferase Deficiency,UTP-Hexose-1-Phosphate Uridylyltransferase Deficiency Disease,Classic Galactosemias,Deficiencies, GALE,Deficiencies, GALK,Deficiencies, GALT,Deficiencies, Galactokinase,Deficiencies, Galactose Epimerase,Deficiencies, Galactose-1-Phosphate Uridyltransferase,Deficiencies, Galactose-1-Phosphate Uridylyltransferase,Deficiencies, Hereditary Galactokinase,Deficiencies, UDP-Galactose-4-Epimerase,Deficiency Disease, Galactose 1 Phosphate Uridyl Transferase,Deficiency Disease, UDP Galactose 4 Epimerase,Deficiency Disease, UDPglucose 4 Epimerase,Deficiency Diseases, UDP-Galactose-4-Epimerase,Deficiency Galactosemia, Epimerase,Deficiency Galactosemias, Epimerase,Deficiency, GALE,Deficiency, GALK,Deficiency, GALT,Deficiency, Galactokinase,Deficiency, Galactose Epimerase,Deficiency, Galactose-1-Phosphate Uridyltransferase,Deficiency, Galactose-1-Phosphate Uridylyltransferase,Deficiency, Hereditary Galactokinase,Deficiency, UDP-Galactose-4-Epimerase,Epimerase Deficiency Galactosemias,GALE Deficiencies,GALK Deficiencies,GALT Deficiencies,Galactokinase Deficiencies,Galactokinase Deficiencies, Hereditary,Galactokinase Deficiency Diseases,Galactokinase Deficiency, Hereditary,Galactose 1 Phosphate Uridyl Transferase Deficiency Disease,Galactose 1 Phosphate Uridyltransferase Deficiency,Galactose 1 Phosphate Uridylyltransferase Deficiency,Galactose Epimerase Deficiencies,Galactose-1-Phosphate Uridyltransferase Deficiencies,Galactose-1-Phosphate Uridylyltransferase Deficiencies,Galactosemia 2s,Galactosemia 3s,Galactosemia IIIs,Galactosemia, Epimerase Deficiency,Galactosemias, Classic,Galactosemias, Epimerase Deficiency,Hereditary Galactokinase Deficiencies,UDP Galactose 4 Epimerase Deficiency,UDP Galactose 4 Epimerase Deficiency Disease,UDP-Galactose-4-Epimerase Deficiencies,UDP-Galactose-4-Epimerase Deficiency Diseases,UDPGlucose Hexose 1 Phosphate Uridylyltransferase Deficiency,UDPglucose 4 Epimerase Deficiency Disease,UTP Hexose 1 Phosphate Uridylyltransferase Deficiency,UTP Hexose 1 Phosphate Uridylyltransferase Deficiency Disease,Uridyltransferase Deficiencies, Galactose-1-Phosphate,Uridyltransferase Deficiency, Galactose-1-Phosphate,Uridylyltransferase Deficiencies, Galactose-1-Phosphate,Uridylyltransferase Deficiency, Galactose-1-Phosphate
D005694 UTP-Hexose-1-Phosphate Uridylyltransferase An enzyme that catalyzes the synthesis of UDPgalactose from UTP and galactose-1-phosphate. It is present in low levels in fetal and infant liver, but increases with age, thereby enabling galactosemic infants who survive to develop the capacity to metabolize galactose. EC 2.7.7.10. Galactosephosphate Uridylyltransferase,UDP Galactose Pyrophosphorylase,Galactose-1-Phosphate Uridyltransferase,Galactose 1 Phosphate Uridyltransferase,Galactose Pyrophosphorylase, UDP,Pyrophosphorylase, UDP Galactose,UTP Hexose 1 Phosphate Uridylyltransferase,Uridyltransferase, Galactose-1-Phosphate,Uridylyltransferase, Galactosephosphate,Uridylyltransferase, UTP-Hexose-1-Phosphate

Related Publications

S D Langley, and K Lai, and P P Dembure, and L N Hjelm, and L J Elsas
January 1984, Human genetics,
S D Langley, and K Lai, and P P Dembure, and L N Hjelm, and L J Elsas
January 1987, JAMA,
S D Langley, and K Lai, and P P Dembure, and L N Hjelm, and L J Elsas
January 1972, Humangenetik,
S D Langley, and K Lai, and P P Dembure, and L N Hjelm, and L J Elsas
April 1976, Biochemical medicine,
S D Langley, and K Lai, and P P Dembure, and L N Hjelm, and L J Elsas
January 1973, Israel journal of medical sciences,
S D Langley, and K Lai, and P P Dembure, and L N Hjelm, and L J Elsas
July 2009, Orvosi hetilap,
S D Langley, and K Lai, and P P Dembure, and L N Hjelm, and L J Elsas
January 1977, Cytogenetics and cell genetics,
S D Langley, and K Lai, and P P Dembure, and L N Hjelm, and L J Elsas
May 1982, The Journal of pediatrics,
S D Langley, and K Lai, and P P Dembure, and L N Hjelm, and L J Elsas
August 2004, Molecular genetics and metabolism,
S D Langley, and K Lai, and P P Dembure, and L N Hjelm, and L J Elsas
January 2021, Molecular genetics and metabolism,
Copied contents to your clipboard!