Basal lamina and extracellular matrix alterations in the caudal neural tube of the delayed Splotch embryo. 1987

K S O'Shea, and L H Liu
Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor 48109.

Regional patterns of deposition of laminin (LN), fibronectin (FN), type IV collagen (IV), and heparan sulfate proteoglycan (HSPG) were examined during the formation of the caudal neural tube in embryos homozygous for the delayed Splotch gene and in their normal littermates. Delayed Splotch embryos had neural tube closure defects which extended from the posterior neuropore into the region formed by secondary neurulation. During posterior neuropore closure these components were normally restricted to forming basal laminae, with FN and HSPG additionally deposited in the mesenchyme. Unlike control embryos in which medial regions of the neuroepithelial basal lamina contained greatest amounts of all four, the dorsolateral zone contained less LN and IV and more FN and HSPG, in affected embryos these components were less densely deposited medially, reflecting perhaps the poor structural organization of the notochord. The neuroepithelial basal lamina was often disorganized and wavy compared to the linear pattern typical of controls. By the 12th day, the posterior neuropore of controls had closed and secondary neurulation was underway; however in delayed Splotch embryos, the neural folds remained widely splayed and epithelium newly formed via secondary neurulation extended that abnormally open configuration to the tip of the tailbud. In controls, with mesenchymal cell aggregation FN and HSPG were displaced from between cells to the forming basal lamina. As a central lumen formed within the aggregate LN and IV were added to the basal lamina, and the newly formed epithelium merged with the anterior neural tube. In delayed Splotch embryos, FN and HSPG were incompletely removed from aggregating cell surfaces, the normal morphogenetic cell shaping changes failed to occur and in many embryos a central lumen did not form; the overgrown, aggregated cells merging with the abnormally splayed anterior neural folds. In addition, the critical enrichment of FN and HSPG present between newly formed and consolidated neuroepithelium was displaced in delayed Splotch embryos.

UI MeSH Term Description Entries
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D009436 Neural Tube Defects Congenital malformations of the central nervous system and adjacent structures related to defective neural tube closure during the first trimester of pregnancy generally occurring between days 18-29 of gestation. Ectodermal and mesodermal malformations (mainly involving the skull and vertebrae) may occur as a result of defects of neural tube closure. (From Joynt, Clinical Neurology, 1992, Ch55, pp31-41) Craniorachischisis,Developmental Defects, Neural Tube,Diastematomyelia,Exencephaly,Neurenteric Cyst,Spinal Cord Myelodysplasia,Tethered Cord Syndrome,Acrania,Developmental Neural Tube Defects,Iniencephaly,Neural Tube Developmental Defects,Neuroenteric Cyst,Occult Spinal Dysraphism,Occult Spinal Dysraphism Sequence,Tethered Spinal Cord Syndrome,Acranias,Craniorachischises,Cyst, Neurenteric,Cyst, Neuroenteric,Cysts, Neurenteric,Cysts, Neuroenteric,Defect, Neural Tube,Defects, Neural Tube,Diastematomyelias,Dysraphism, Occult Spinal,Dysraphisms, Occult Spinal,Exencephalies,Iniencephalies,Myelodysplasia, Spinal Cord,Myelodysplasias, Spinal Cord,Neural Tube Defect,Neurenteric Cysts,Neuroenteric Cysts,Occult Spinal Dysraphisms,Spinal Cord Myelodysplasias,Spinal Dysraphism, Occult,Spinal Dysraphisms, Occult,Tethered Cord Syndromes
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D006497 Heparitin Sulfate A heteropolysaccharide that is similar in structure to HEPARIN. It accumulates in individuals with MUCOPOLYSACCHARIDOSIS. Heparan Sulfate,Sulfate, Heparan,Sulfate, Heparitin
D006579 Heterozygote An individual having different alleles at one or more loci regarding a specific character. Carriers, Genetic,Genetic Carriers,Carrier, Genetic,Genetic Carrier,Heterozygotes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001485 Basement Membrane A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers. Basal Lamina,Basement Lamina,Lamina Densa,Lamina Lucida,Lamina Reticularis,Basement Membranes,Densas, Lamina,Lamina, Basal,Lamina, Basement,Lucida, Lamina,Membrane, Basement,Membranes, Basement,Reticularis, Lamina
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

K S O'Shea, and L H Liu
November 1991, Development (Cambridge, England),
K S O'Shea, and L H Liu
November 1986, Journal of embryology and experimental morphology,
K S O'Shea, and L H Liu
January 1969, Folia morphologica,
K S O'Shea, and L H Liu
May 1979, Cell and tissue research,
K S O'Shea, and L H Liu
May 1996, The Journal of comparative neurology,
K S O'Shea, and L H Liu
December 1992, Teratology,
Copied contents to your clipboard!