Neuromuscular junctions in adult and developing fast and slow muscles. 1987

W H Kwong, and G F Gauthier
Department of Anatomy, University of Massachusetts Medical School, Worcester 01605.

Functional changes that occur just before hatching in future fast muscles of the chicken are thought to be influenced by the pattern of innervation. We have compared the neuromuscular junctions of two fast muscles, the posterior latissimus dorsi (PLD) and the pectoralis, which differ in their myosin composition at 18 days in ovo. We have also presented new information on the neuromuscular junctions of the adult fast muscles and an adult slow muscle, the anterior latissimus dorsi (ALD). Both categories of adult muscles were heterogeneous, and there was little difference between endplates of the two fast muscles or between the fast and slow muscles. In contrast, there were significant structural differences between the two fast muscles during embryonic development. In early embryonic muscle fibers, which synthesize embryonic forms of myosin, individual motor endplates were contacted by multiple axon terminals. At 18 days in ovo, the majority of the neuromuscular junctions in the pectoralis continued to be multiterminal, whereas all but one of the terminals had been withdrawn from each endplate in the PLD. This single terminal had a unique form that distinguished it from the embryonic pectoralis and also from the two adult muscles. By 7 days after hatching, the neuromuscular junctions of both muscles had single terminals. They were different from the embryonic terminals, though not necessarily equivalent to adult terminals. The results show that multiple terminals persist at 18 days in ovo in the muscle that continues to express an embryonic myosin, but they have been withdrawn from the muscle that has lost this myosin. It is concluded, from combined data on the two muscles, that maturation of the neuromuscular junction during embryonic and late posthatch development is correlated with transitions in the myosin pattern and in contractile properties.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D024510 Muscle Development Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage. Myofibrillogenesis,Myogenesis,Muscular Development,Development, Muscle,Development, Muscular

Related Publications

W H Kwong, and G F Gauthier
January 1991, European journal of biochemistry,
W H Kwong, and G F Gauthier
April 1975, Experimental neurology,
W H Kwong, and G F Gauthier
May 1968, Casopis lekaru ceskych,
W H Kwong, and G F Gauthier
June 1988, International journal of sports medicine,
W H Kwong, and G F Gauthier
July 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!