ECG simulator with configurable skin-electrode impedance and artifacts emulation. 2021

Daniel Almeida, and João Costa, and André Lourenço
ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal.

Electrocardiograms (ECG) recorded from everyday objects, such as wearables, fitness machines or smart steering wheels are becoming increasingly common. Applications are diverse and include health monitoring, athletic performance optimization, identification, authentication, and entertainment. In this study we report the design and implementation of an innovative ECG simulator, providing simulation of signal related artifacts and a dynamically adjustable skin-electrode interface model. The ECG simulator includes a unique combination of features: emulation of time dependent skin-electrode impedance, adjustable differential and common-mode interference, generation of lead-off events and analog front-end output digitalization. The skin-electrode capacitance range is 1 nF-255 nF and the resistance span is 4 kΩ-996 kΩ. System's functionality is demonstrated using a commercially available ECG front-end. The simulated SNR degradation introduced by the ECG simulator is under 0.1 dB. Results show that the skin-electrode interface can have a significant impact in the acquired waveforms. Impedance electrode imbalance, specifically of the resistive component, can generate artifacts which can be misinterpreted has arrhythmias. The proposed device can be useful for hardware and software ECG development and for training physicians and nurses to readily recognize skin-electrode impedance related artifacts.

UI MeSH Term Description Entries
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004562 Electrocardiography Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY. 12-Lead ECG,12-Lead EKG,12-Lead Electrocardiography,Cardiography,ECG,EKG,Electrocardiogram,Electrocardiograph,12 Lead ECG,12 Lead EKG,12 Lead Electrocardiography,12-Lead ECGs,12-Lead EKGs,12-Lead Electrocardiographies,Cardiographies,ECG, 12-Lead,EKG, 12-Lead,Electrocardiograms,Electrocardiographies, 12-Lead,Electrocardiographs,Electrocardiography, 12-Lead
D004566 Electrodes Electric conductors through which electric currents enter or leave a medium, whether it be an electrolytic solution, solid, molten mass, gas, or vacuum. Anode,Anode Materials,Cathode,Cathode Materials,Anode Material,Anodes,Cathode Material,Cathodes,Electrode,Material, Anode,Material, Cathode
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016477 Artifacts Any visible result of a procedure which is caused by the procedure itself and not by the entity being analyzed. Common examples include histological structures introduced by tissue processing, radiographic images of structures that are not naturally present in living tissue, and products of chemical reactions that occur during analysis. Artefacts,Artefact,Artifact
D017097 Electric Impedance The resistance to the flow of either alternating or direct electrical current. Bioelectrical Impedance,Electric Resistance,Impedance,Ohmic Resistance,Biolectric Impedance,Electrical Impedance,Electrical Resistance,Impedance, Bioelectrical,Impedance, Biolectric,Impedance, Electric,Impedance, Electrical,Ohmic Resistances,Resistance, Electric,Resistance, Electrical,Resistance, Ohmic,Resistances, Ohmic

Related Publications

Daniel Almeida, and João Costa, and André Lourenço
January 1979, Medical instrumentation,
Daniel Almeida, and João Costa, and André Lourenço
January 1978, Resuscitation,
Daniel Almeida, and João Costa, and André Lourenço
June 1985, IEEE transactions on bio-medical engineering,
Daniel Almeida, and João Costa, and André Lourenço
January 2007, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Daniel Almeida, and João Costa, and André Lourenço
January 1987, Electromyography and clinical neurophysiology,
Daniel Almeida, and João Costa, and André Lourenço
May 2011, Intensive care medicine,
Daniel Almeida, and João Costa, and André Lourenço
January 2009, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Daniel Almeida, and João Costa, and André Lourenço
October 1968, American heart journal,
Daniel Almeida, and João Costa, and André Lourenço
January 2006, Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference,
Daniel Almeida, and João Costa, and André Lourenço
January 2014, The Review of scientific instruments,
Copied contents to your clipboard!