A novel chlorhexidine-hexametaphosphate coating for titanium with antibiofilm efficacy and stem cell cytocompatibility. 2021

Sarah J Garner, and Mathew J Dalby, and Angela H Nobbs, and Michele E Barbour
Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK.

Dental implants are an increasingly popular way to replace missing teeth. Whilst implant survival rates are high, a small number fail soon after placement, with various factors, including bacterial contamination, capable of disrupting osseointegration. This work describes the development of chlorhexidine-hexametaphosphate coatings for titanium that hydrolyse to release the antiseptic agent chlorhexidine. The aim was to develop a coating for titanium that released sufficient chlorhexidine to prevent biofilm formation, whilst simultaneously maintaining cytocompatibility with cells involved in osseointegration. The coatings were characterised with respect to physical properties, after which antibiofilm efficacy was investigated using a multispecies biofilm model, and cytocompatibility determined using human mesenchymal stem cells. The coatings exhibited similar physicochemical properties to some implant surfaces in clinical use, and significantly reduced formation of multispecies biofilm biomass up to 72 h. One coating had superior cytocompatibility, with mesenchymal stem cells able to perform normal functions and commence osteoblastic differentiation, although at a slower rate than those grown on uncoated titanium. With further refinement, these coatings may have application in the prevention of bacterial contamination of dental implants at the time of surgery. This could aid a reduction in rates of early implant failure.

UI MeSH Term Description Entries
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002710 Chlorhexidine A disinfectant and topical anti-infective agent used also as mouthwash to prevent oral plaque. Chlorhexidine Acetate,Chlorhexidine Hydrochloride,MK-412A,Novalsan,Sebidin A,Tubulicid,Acetate, Chlorhexidine,Hydrochloride, Chlorhexidine,MK 412A,MK412A
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible
D013499 Surface Properties Characteristics or attributes of the outer boundaries of objects, including molecules. Properties, Surface,Property, Surface,Surface Property
D014025 Titanium A dark-gray, metallic element of widespread distribution but occurring in small amounts with atomic number, 22, atomic weight, 47.867 and symbol, Ti; specific gravity, 4.5; used for fixation of fractures.
D059630 Mesenchymal Stem Cells Mesenchymal stem cells, also referred to as multipotent stromal cells or mesenchymal stromal cells are multipotent, non-hematopoietic adult stem cells that are present in multiple tissues, including BONE MARROW; ADIPOSE TISSUE; and WHARTON JELLY. Mesenchymal stem cells can differentiate into mesodermal lineages, such as adipocytic, osteocytic and chondrocytic. Adipose Tissue-Derived Mesenchymal Stem Cell,Adipose Tissue-Derived Mesenchymal Stromal Cell,Adipose-Derived Mesenchymal Stem Cell,Bone Marrow Mesenchymal Stem Cell,Mesenchymal Stromal Cell,Mesenchymal Stromal Cells,Multipotent Bone Marrow Stromal Cell,Multipotent Mesenchymal Stromal Cell,Adipose Tissue-Derived Mesenchymal Stem Cells,Adipose Tissue-Derived Mesenchymal Stromal Cells,Adipose-Derived Mesenchymal Stem Cells,Adipose-Derived Mesenchymal Stromal Cells,Bone Marrow Mesenchymal Stem Cells,Bone Marrow Stromal Cell,Bone Marrow Stromal Cells,Bone Marrow Stromal Cells, Multipotent,Bone Marrow Stromal Stem Cells,Mesenchymal Progenitor Cell,Mesenchymal Progenitor Cells,Mesenchymal Stem Cell,Mesenchymal Stem Cells, Adipose-Derived,Mesenchymal Stromal Cells, Multipotent,Multipotent Bone Marrow Stromal Cells,Multipotent Mesenchymal Stromal Cells,Stem Cells, Mesenchymal,Wharton Jelly Cells,Wharton's Jelly Cells,Adipose Derived Mesenchymal Stem Cell,Adipose Derived Mesenchymal Stem Cells,Adipose Derived Mesenchymal Stromal Cells,Adipose Tissue Derived Mesenchymal Stem Cell,Adipose Tissue Derived Mesenchymal Stem Cells,Adipose Tissue Derived Mesenchymal Stromal Cell,Adipose Tissue Derived Mesenchymal Stromal Cells,Mesenchymal Stem Cells, Adipose Derived,Progenitor Cell, Mesenchymal,Progenitor Cells, Mesenchymal,Stem Cell, Mesenchymal,Stromal Cell, Mesenchymal,Stromal Cells, Mesenchymal,Wharton's Jelly Cell,Whartons Jelly Cells
D018441 Biofilms Encrustations formed from microbes (bacteria, algae, fungi, plankton, or protozoa) embedded in an EXTRACELLULAR POLYMERIC SUBSTANCE MATRIX that is secreted by the microbes. They occur on body surfaces such as teeth (DENTAL DEPOSITS); inanimate objects, and bodies of water. Biofilms are prevented from forming by treating surfaces with DENTIFRICES; DISINFECTANTS; ANTI-INFECTIVE AGENTS; and anti-fouling agents. Biofilm

Related Publications

Sarah J Garner, and Mathew J Dalby, and Angela H Nobbs, and Michele E Barbour
January 2023, International journal of biomaterials,
Sarah J Garner, and Mathew J Dalby, and Angela H Nobbs, and Michele E Barbour
June 2015, Journal of materials science. Materials in medicine,
Sarah J Garner, and Mathew J Dalby, and Angela H Nobbs, and Michele E Barbour
August 2016, Nanomedicine (London, England),
Sarah J Garner, and Mathew J Dalby, and Angela H Nobbs, and Michele E Barbour
November 2020, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics,
Sarah J Garner, and Mathew J Dalby, and Angela H Nobbs, and Michele E Barbour
February 2021, Regenerative biomaterials,
Sarah J Garner, and Mathew J Dalby, and Angela H Nobbs, and Michele E Barbour
January 2018, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences,
Sarah J Garner, and Mathew J Dalby, and Angela H Nobbs, and Michele E Barbour
November 2015, Materials science & engineering. C, Materials for biological applications,
Sarah J Garner, and Mathew J Dalby, and Angela H Nobbs, and Michele E Barbour
February 2012, Nanotechnology,
Sarah J Garner, and Mathew J Dalby, and Angela H Nobbs, and Michele E Barbour
January 2014, Journal of nanobiotechnology,
Sarah J Garner, and Mathew J Dalby, and Angela H Nobbs, and Michele E Barbour
October 2014, Acta biomaterialia,
Copied contents to your clipboard!