3D-QSAR, molecular docking, DFT and ADMET studies on quinazoline derivatives to explore novel DHFR inhibitors. 2023

Hanine Hadni, and Mohamed Bakhouch, and Menana Elhallaoui
LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.

Resistance to folate antagonists is caused by mutations in the dihydrofolate reductase (DHFR) genes. These mutations affect the amino acids at positions 51, 59, 108 and 164 of DHFR, which appear to play a major role in malaria treatment failure. Therefore, the design of new drugs able to overcome the problem of antifolate drug resistance should receive urgent attention. In this study, a three-dimensional quantitative structure-activity relationship (3 D-QSAR) and molecular docking studies have been performed on antimalarial quinazoline derivatives. The CoMFA (Q2 = 0.63, R2 = 0.83 and = 0.70) and the CoMSIA (Q2 = 0.584, R2 = 0.816, and = 0.73) models show a good prediction of antimalarial activity. The reliability and robustness of the proposed models have been tested using several validation methods, which showed that the steric, electrostatic, hydrophobic and H-bond acceptor fields of the CoMSIA model play a key role in the prediction of antimalarial activity. Molecular docking studies reveal important interactions between two isomeric compounds (meta and para) and the DHFR receptor in its wild and mutant forms. The obtained outcomes of molecular docking studies have been validated using a new method based on visual inspection. The DFT study of the two isomeric compounds confirms clearly the trends of 3 D-QSAR and molecular docking for the design of new compounds. Moreover, the consistency between theoretical, 3 D-QSAR and molecular docking analysis provides guidance for the design of new drug candidates, which have been tested using ADMET properties and drug likeness analysis.Communicated by Ramaswamy H. Sarma.

UI MeSH Term Description Entries
D011799 Quinazolines A group of aromatic heterocyclic compounds that contain a bicyclic structure with two fused six-membered aromatic rings, a benzene ring and a pyrimidine ring. Quinazoline
D005493 Folic Acid Antagonists Inhibitors of the enzyme, dihydrofolate reductase (TETRAHYDROFOLATE DEHYDROGENASE), which converts dihydrofolate (FH2) to tetrahydrofolate (FH4). They are frequently used in cancer chemotherapy. (From AMA, Drug Evaluations Annual, 1994, p2033) Antifolate,Antifolates,Dihydrofolate Reductase Inhibitor,Folic Acid Antagonist,Dihydrofolate Reductase Inhibitors,Folic Acid Metabolism Inhibitors,Acid Antagonist, Folic,Acid Antagonists, Folic,Antagonist, Folic Acid,Antagonists, Folic Acid,Inhibitor, Dihydrofolate Reductase,Inhibitors, Dihydrofolate Reductase,Reductase Inhibitor, Dihydrofolate,Reductase Inhibitors, Dihydrofolate
D000962 Antimalarials Agents used in the treatment of malaria. They are usually classified on the basis of their action against plasmodia at different stages in their life cycle in the human. (From AMA, Drug Evaluations Annual, 1992, p1585) Anti-Malarial,Antimalarial,Antimalarial Agent,Antimalarial Drug,Anti-Malarials,Antimalarial Agents,Antimalarial Drugs,Agent, Antimalarial,Agents, Antimalarial,Anti Malarial,Anti Malarials,Drug, Antimalarial,Drugs, Antimalarial
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D062105 Molecular Docking Simulation A computer simulation technique that is used to model the interaction between two molecules. Typically the docking simulation measures the interactions of a small molecule or ligand with a part of a larger molecule such as a protein. Molecular Docking,Molecular Docking Simulations,Molecular Docking Analysis,Analysis, Molecular Docking,Docking Analysis, Molecular,Docking Simulation, Molecular,Docking, Molecular,Molecular Docking Analyses,Molecular Dockings,Simulation, Molecular Docking
D021281 Quantitative Structure-Activity Relationship A quantitative prediction of the biological, ecotoxicological or pharmaceutical activity of a molecule. It is based upon structure and activity information gathered from a series of similar compounds. Structure Activity Relationship, Quantitative,3D-QSAR,QSAR,QSPR Modeling,Quantitative Structure Property Relationship,3D QSAR,3D-QSARs,Modeling, QSPR,Quantitative Structure Activity Relationship,Quantitative Structure-Activity Relationships,Relationship, Quantitative Structure-Activity,Relationships, Quantitative Structure-Activity,Structure-Activity Relationship, Quantitative,Structure-Activity Relationships, Quantitative

Related Publications

Hanine Hadni, and Mohamed Bakhouch, and Menana Elhallaoui
June 2018, Computational biology and chemistry,
Hanine Hadni, and Mohamed Bakhouch, and Menana Elhallaoui
January 2013, EXCLI journal,
Hanine Hadni, and Mohamed Bakhouch, and Menana Elhallaoui
January 2008, Bioinformation,
Hanine Hadni, and Mohamed Bakhouch, and Menana Elhallaoui
April 2024, Journal of biomolecular structure & dynamics,
Hanine Hadni, and Mohamed Bakhouch, and Menana Elhallaoui
December 2022, Molecules (Basel, Switzerland),
Hanine Hadni, and Mohamed Bakhouch, and Menana Elhallaoui
August 2023, Journal of biomolecular structure & dynamics,
Hanine Hadni, and Mohamed Bakhouch, and Menana Elhallaoui
March 2009, Chemical biology & drug design,
Copied contents to your clipboard!