Regeneration of motoneuron axons into the adult frog spinal cord after ventral-to-dorsal-root anastomosis. 1986

F J Liuzzi, and R J Lasek

Motoneuron axons routed into the adult frog spinal cord via a ventral-to-dorsal-root anastomosis regenerated into the white and the gray matters. The distribution, growth patterns, and arborizations of regenerated ventral root axons were compared to those of regenerated dorsal root axons within the same environment. Within the spinal white matter, regenerating ventral root axons behaved very similarly to regenerating dorsal root axons. Here, the regenerating ventral root axons grew longitudinally beneath the pia and radially toward the spinal gray matter, particularly within the dorsolateral fasciculus. The location of the regenerating axons and the patterns of their growth within the white matter suggest that glial endfeet and radial glial processes play a major role in the determination of these axonal growth patterns. When motor axons entered the gray matter, their arborizations were very similar to those of regenerated dorsal root axons, suggesting that these two very distinct populations of axons respond similarly to local cues within the spinal gray matter. One difference between the arborizations of these two populations of axons was the relative number of varicosities along axonal branches. Regenerated motoneuronal arborizations within the spinal gray matter had fewer en passant varicosities than regenerated dorsal root axonal arborizations. This difference may reflect the synaptogenetic response of the two types of axons to targets within the gray matter. The low number of en passant varicosities associated with the ventral root axonal aborizations suggests that these axons do not synapse with all available targets and that the rules governing synaptic specificity during development may apply during regeneration in the adult frog spinal cord.

UI MeSH Term Description Entries
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008297 Male Males
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

F J Liuzzi, and R J Lasek
January 1993, Acta neurochirurgica. Supplementum,
F J Liuzzi, and R J Lasek
April 1988, The Journal of comparative neurology,
F J Liuzzi, and R J Lasek
December 1999, Neuroreport,
F J Liuzzi, and R J Lasek
August 1973, Experimental neurology,
F J Liuzzi, and R J Lasek
September 1990, Neuroscience letters,
Copied contents to your clipboard!