A comparison of active zone structure in frog neuromuscular junctions from two fast muscles with different synaptic efficacy. 1986

J W Propst, and A A Herrera, and C P Ko

To search for ultrastructural correlates of differences in synaptic safety factor and neurotransmitter release, neuromuscular junctions from the cutaneous pectoris and cutaneous dorsi muscles of the grass frog Rana pipiens were freeze fractured. Synaptic efficacy in these muscles was determined by the extent to which isometric twitch tension could be blocked by lowering [Ca2+] in the bathing solution. We found that junctions in the cutaneous pectoris were significantly more effective than those of the cutaneous dorsi. Morphometric analysis of 16 junctions from each type of muscle showed significant differences in some aspects of active zone structure. Cutaneous pectoris terminals had longer active zone segments and active zones spaced more closely together. This resulted in 20% more active zone length per unit terminal length in the cutaneous pectoris. Cutaneous dorsi terminals had active zones that were more often segmented into two or more sections at a single junctional fold. Mean active zone length per junctional fold and the number of active zone particles per micrometre of active zone length were not significantly different. As a result of the somewhat larger terminal width in the cutaneous dorsi, the percentage of terminal width occupied by active zone was greater in the cutaneous pectoris. As an attempt to indirectly estimate active zone spacing with the light microscope, we applied rhodamine-conjugated alpha bungarotoxin to neuromuscular junctions from the cutaneous pectoris and cutaneous dorsi. No significant difference in the spacing of fluorescently labelled acetylcholine receptor bands was found between the two types of junctions. Our results indicated that the greater active zone length per unit terminal length in the cutaneous pectoris was associated with its increased synaptic efficacy. In addition the continuity and particle organization of active zones may have contributed to the observed differences in synaptic safety factor at frog neuromuscular junctions.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

J W Propst, and A A Herrera, and C P Ko
October 1986, The Journal of physiology,
J W Propst, and A A Herrera, and C P Ko
June 1980, Journal of neurocytology,
J W Propst, and A A Herrera, and C P Ko
April 1978, Brain research,
J W Propst, and A A Herrera, and C P Ko
September 1984, Neuroscience,
J W Propst, and A A Herrera, and C P Ko
October 1980, The Journal of physiology,
J W Propst, and A A Herrera, and C P Ko
August 1983, Brain research,
J W Propst, and A A Herrera, and C P Ko
August 1994, Anatomy and embryology,
J W Propst, and A A Herrera, and C P Ko
November 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J W Propst, and A A Herrera, and C P Ko
May 1984, The Journal of physiology,
J W Propst, and A A Herrera, and C P Ko
April 1983, Journal of neurocytology,
Copied contents to your clipboard!