Fused cells of frog proximal tubule: I. Basic membrane properties. 1987

P Dietl, and W Wang, and H Oberleithner
Department of Physiology, University of Würzburg, Federal Republic of Germany.

Proximal tubular cells of the frog (Rana esculenta) kidney were fused within an isolated tubule portion to giant cells according to the polyethylene-glycol fusion method. Cell membrane potentials (Vm) were measured while cells were superfused with various experimental solutions. Rapid concentration step-changes of different ions allowed to calculate the respective transference numbers (tion). In some experiments the specific cell membrane resistances (Rm) were evaluated by measuring Vm induced by short current pulses injected into the cell with a second electrode. The experiments reveal: i) Fused cells of the proximal tubule exhibit a Vm of -49.5 +/- 1.6 mV (n = 65). ii) Addition of glucose to the perfusate yields a transient depolarization, consistent with a rheogenic Na/glucose cotransport system. iii) In absence of organic substrates the whole cell membrane conductance is made up of K+ and HCO3-. iv) There is a positive relationship between Vm and tK+ and a negative relationship between Vm and tHCO3-. v) HCO3--induced Vm changes are attenuated or abolished when Na+ is replaced with choline+, consistent with a rheogenic Na+/HCO3- cotransport system. vi) Replacement of Na+ by choline+ depolarizes Vm and increases Rm by about 50%; addition of 3 mmol/liter Ba2+ to the Na+-free perfusate increases Rm by about 58% compared to the initial control value. vii) There is no measurable cell membrane Cl- conductance. We conclude that fused cells of proximal tubule exert both luminal and peritubular membrane properties. In absence of organic substrates the cell membrane potential is determined by the HCO3- and K+ transport systems.

UI MeSH Term Description Entries
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011893 Rana esculenta An edible species of the family Ranidae, occurring in Europe and used extensively in biomedical research. Commonly referred to as "edible frog". Pelophylax esculentus
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid

Related Publications

P Dietl, and W Wang, and H Oberleithner
March 1988, The Journal of membrane biology,
P Dietl, and W Wang, and H Oberleithner
April 1997, The American journal of physiology,
P Dietl, and W Wang, and H Oberleithner
March 1991, Pflugers Archiv : European journal of physiology,
P Dietl, and W Wang, and H Oberleithner
April 1986, The American journal of physiology,
P Dietl, and W Wang, and H Oberleithner
October 2005, American journal of physiology. Cell physiology,
P Dietl, and W Wang, and H Oberleithner
May 1985, Pflugers Archiv : European journal of physiology,
P Dietl, and W Wang, and H Oberleithner
November 1982, European journal of cell biology,
P Dietl, and W Wang, and H Oberleithner
April 1990, The American journal of physiology,
P Dietl, and W Wang, and H Oberleithner
August 1986, The American journal of physiology,
P Dietl, and W Wang, and H Oberleithner
May 1984, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!