Multiple tracer dilution estimates of D- and 2-deoxy-D-glucose uptake by the heart. 1986

J Kuikka, and M Levin, and J B Bassingthwaighte

Permeability-surface area products of the capillary wall, PSc, and the myocyte sarcolemma, PSpc, for D-glucose and 2-deoxy-D-glucose were estimated via the multiple indicator-dilution technique in isolated blood-perfused dog and Tyrode-perfused rabbit hearts. Aortic bolus injections contained 131I-albumin (intravascular reference), two of three glucoses: L-glucose (an extracellular reference solute), D-glucose, and 2-deoxy-D-glucose. Outflow dilution curves were sampled for 1-2.5 min without recirculation. The long duration sampling allowed accurate evaluation of PSpc by fitting the dilution curves with a multiregional axially distributed capillary-interstitial fluid-cell model accounting for the heterogeneity of regional flows (measured using microspheres and total heart sectioning). With average blood flow of 1.3 ml . g-1 . min-1, in the dog hearts the PSc for D-glucose was 0.72 +/- 0.17 ml . g-1 . min-1 (mean +/- SD; n = 11), and PSpc was 0.57 +/- 0.15 ml . g-1 . min-1. In the rabbit hearts with perfusate flow of 2.0 ml . g-1 . min-1 (n = 6), PSc was 1.2 +/- 0.1 and PSpc was 0.4 +/- 0.1 ml . g-1 . min-1. PSc for 2-deoxy-D-glucose was about 4% higher than for D-glucose and L-glucose in both preparations. Relative to L-glucose, there was no measurable transendothelial transport of either dextroglucose, indicating that transcapillary transport was by passive diffusion, presumably via the clefts between cells. The technique allows repeated measurements of D-glucose uptake at intervals of a few minutes; it may therefore be used to assess changes in transport rates occurring over intervals of several minutes.

UI MeSH Term Description Entries
D007201 Indicator Dilution Techniques Methods for assessing flow through a system by injection of a known quantity of an indicator, such as a dye, radionuclide, or chilled liquid, into the system and monitoring its concentration over time at a specific point in the system. (From Dorland, 28th ed) Dilution Techniques,Dilution Technics,Indicator Dilution Technics,Dilution Technic,Dilution Technic, Indicator,Dilution Technics, Indicator,Dilution Technique,Dilution Technique, Indicator,Dilution Techniques, Indicator,Indicator Dilution Technic,Indicator Dilution Technique,Technic, Dilution,Technic, Indicator Dilution,Technics, Dilution,Technics, Indicator Dilution,Technique, Dilution,Technique, Indicator Dilution,Techniques, Dilution,Techniques, Indicator Dilution
D008955 Models, Cardiovascular Theoretical representations that simulate the behavior or activity of the cardiovascular system, processes, or phenomena; includes the use of mathematical equations, computers and other electronic equipment. Cardiovascular Model,Cardiovascular Models,Model, Cardiovascular
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002199 Capillary Permeability The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement. Microvascular Permeability,Permeability, Capillary,Permeability, Microvascular,Vascular Permeability,Capillary Permeabilities,Microvascular Permeabilities,Permeabilities, Capillary,Permeabilities, Microvascular,Permeabilities, Vascular,Permeability, Vascular,Vascular Permeabilities
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D003837 Deoxy Sugars Sugars that in which one or more hydroxyl groups of the pyranose or furanose ring is substituted by hydrogen. Deoxy Sugar,Sugar, Deoxy,Sugars, Deoxy
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog

Related Publications

J Kuikka, and M Levin, and J B Bassingthwaighte
June 1983, European journal of cancer & clinical oncology,
J Kuikka, and M Levin, and J B Bassingthwaighte
January 1982, The Journal of comparative neurology,
J Kuikka, and M Levin, and J B Bassingthwaighte
February 1973, The Biochemical journal,
J Kuikka, and M Levin, and J B Bassingthwaighte
July 1982, The American journal of physiology,
J Kuikka, and M Levin, and J B Bassingthwaighte
March 1978, Journal of applied physiology: respiratory, environmental and exercise physiology,
J Kuikka, and M Levin, and J B Bassingthwaighte
December 1976, Archives of microbiology,
J Kuikka, and M Levin, and J B Bassingthwaighte
January 1979, Journal of neuroscience research,
J Kuikka, and M Levin, and J B Bassingthwaighte
May 1989, Neuroscience letters,
J Kuikka, and M Levin, and J B Bassingthwaighte
March 1990, Biochimica et biophysica acta,
J Kuikka, and M Levin, and J B Bassingthwaighte
August 1999, Clinical nuclear medicine,
Copied contents to your clipboard!