The nucleotide sequence of threonine transfer RNA coded by bacteriophage T4. 1978

C Guthrie, and C A Scholla, and H Yesian, and J Abelson

The nucleotide sequence of a low molecular weight RNA coded by bacteriophage T4 (and previously identified as species alpha) has been determined. The molecule is of particular biological interest for its associated biosynthetic properties. This RNA is 76 nucleotides in length, contains eight modified bases, and can be arranged in a cloverleaf configuration common to tRNAs. The anticodon sequence is UGU, which corresponds to the threonine-specific codons ACA G. The nucleotide sequence was determined primarily by nearest-neighbor analysis of RNA synthesized in vitro using [alpha-32P]nucleoside triphosphates. Using the single-strand specific nuclease S1, two in vivo labeled half-molecules were generated and analysed. This information together with restrictions imposed by nearest-neighbor data, provided a unique linear sequence of nucleotides with the features of secondary structure common to tRNA molecules.

UI MeSH Term Description Entries
D009843 Oligoribonucleotides A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000926 Anticodon The sequential set of three nucleotides in TRANSFER RNA that interacts with its complement in MESSENGER RNA, the CODON, during translation in the ribosome. Anticodons
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D013912 Threonine An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins. L-Threonine,L Threonine
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

C Guthrie, and C A Scholla, and H Yesian, and J Abelson
November 1973, FEBS letters,
C Guthrie, and C A Scholla, and H Yesian, and J Abelson
September 1968, Proceedings of the National Academy of Sciences of the United States of America,
C Guthrie, and C A Scholla, and H Yesian, and J Abelson
July 1975, Journal of molecular biology,
C Guthrie, and C A Scholla, and H Yesian, and J Abelson
October 1974, Nucleic acids research,
C Guthrie, and C A Scholla, and H Yesian, and J Abelson
September 1973, The Journal of biological chemistry,
C Guthrie, and C A Scholla, and H Yesian, and J Abelson
July 1984, Biochimica et biophysica acta,
C Guthrie, and C A Scholla, and H Yesian, and J Abelson
November 1977, The Journal of biological chemistry,
C Guthrie, and C A Scholla, and H Yesian, and J Abelson
February 1981, Proceedings of the National Academy of Sciences of the United States of America,
C Guthrie, and C A Scholla, and H Yesian, and J Abelson
December 1975, Journal of molecular biology,
C Guthrie, and C A Scholla, and H Yesian, and J Abelson
November 1970, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!