Regulation of the yeast metallothionein gene. 1986

J A Gorman, and P E Clark, and M C Lee, and C Debouck, and M Rosenberg

To study regulation of the yeast CUP1 gene, we have employed plasmids containing the CUP1 regulatory sequences fused to the Escherichia coli galK gene. A comparison of galK expression from low- and high-copy-number CUP1/galK fusion plasmids demonstrated that both basal and induced levels of galactokinase (GalK) increase proportionately with plasmid copy number. Host strains with an amplified, single or deleted CUP1 locus were compared to look for effects of chromosomal CUP1 gene dosage on expression from the episomal CUP1 promoter. Basal GalK levels are similar in CUP1R and cupls hosts, but can be induced to higher levels in the cup1s than the CUP1R host. In contrast, in a strain deleted for the chromosomal copy of CUP1, synthesis of GalK is constitutive but can be induced to yet higher levels by copper. A hybrid vector, placing the CUP1 coding sequence under the control of a constitutive promoter, was constructed. Introduction of this hybrid CUP1 gene into the deletion host containing the CUP1/galK plasmid restores regulation. Thus, metallothionein, in trans, can effect repression of the CUP1 promoter. The possible roles of metallothionein and free copper in CUP1 regulation are discussed.

UI MeSH Term Description Entries
D008668 Metallothionein A low-molecular-weight (approx. 10 kD) protein occurring in the cytoplasm of kidney cortex and liver. It is rich in cysteinyl residues and contains no aromatic amino acids. Metallothionein shows high affinity for bivalent heavy metals. Isometallothionein,Metallothionein A,Metallothionein B,Metallothionein I,Metallothionein II,Metallothionein IIA
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005686 Galactokinase An enzyme that catalyzes reversibly the formation of galactose 1-phosphate and ADP from ATP and D-galactose. Galactosamine can also act as the acceptor. A deficiency of this enzyme results in GALACTOSEMIA. EC 2.7.1.6.
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

J A Gorman, and P E Clark, and M C Lee, and C Debouck, and M Rosenberg
August 1987, Biochemical Society transactions,
J A Gorman, and P E Clark, and M C Lee, and C Debouck, and M Rosenberg
January 1993, Progress in clinical and biological research,
J A Gorman, and P E Clark, and M C Lee, and C Debouck, and M Rosenberg
January 1990, Progress in food & nutrition science,
J A Gorman, and P E Clark, and M C Lee, and C Debouck, and M Rosenberg
January 2001, Progress in nucleic acid research and molecular biology,
J A Gorman, and P E Clark, and M C Lee, and C Debouck, and M Rosenberg
January 1998, Progress in nucleic acid research and molecular biology,
J A Gorman, and P E Clark, and M C Lee, and C Debouck, and M Rosenberg
January 1988, Journal of bacteriology,
J A Gorman, and P E Clark, and M C Lee, and C Debouck, and M Rosenberg
January 1994, Biological signals,
J A Gorman, and P E Clark, and M C Lee, and C Debouck, and M Rosenberg
October 1987, Archives of dermatology,
J A Gorman, and P E Clark, and M C Lee, and C Debouck, and M Rosenberg
January 1986, Horizons in biochemistry and biophysics,
J A Gorman, and P E Clark, and M C Lee, and C Debouck, and M Rosenberg
January 1990, Advances in inorganic biochemistry,
Copied contents to your clipboard!