Biochemical genetics of the cryptic gene system for cellobiose utilization in Escherichia coli K12. 1987

M Kricker, and B G Hall

The cellobiose catabolic system of Escherichia coli K12 is being used to study the role of cryptic genes in microbial evolution. Wild-type E. coli K12 do not utilize the beta-glucoside sugars, arbutin, salicin and cellobiose. A Cel+ (cellobiose utilizing) mutant which grows on cellobiose, arbutin, and salicin was isolated previously from wild-type E. coli K12. Biochemical assays indicate that a cel structural gene (celT) specifies a single transport protein that is a beta-glucoside specific enzyme of the phosphoenolpyruvate-dependent phosphotransferase system. The transport protein phosphorylates beta-glucosides at the expense of phosphoenolpyruvate. A single phosphoglucosidase, specified by celH, hydrolyzes phosphorylated cellobiose, arbutin, and salicin. The genes of the cel system are expressed constitutively in the Cel+ mutant, whereas they are not expressed at a detectable level in the wild-type strain. The transport and hydrolase genes are simultaneously silenced or simultaneously expressed and thus constitute an operon. Cel+ strains which fail to utilize one or more beta-glucosides express the transport system at a lower level than do Cel+ strains which grow on all three beta-glucosides. Other strains inducibly express a gene which specifies transport of arbutin but not the other beta-glucosides. The arbutin transport gene, arbT, maps outside of the cel locus.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002475 Cellobiose A disaccharide consisting of two glucose units in beta (1-4) glycosidic linkage. Obtained from the partial hydrolysis of cellulose. 4-O-beta-D-Glucopyranosyl-D-glucopyranose,4 O beta D Glucopyranosyl D glucopyranose
D004187 Disaccharides Oligosaccharides containing two monosaccharide units linked by a glycosidic bond. Disaccharide
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes

Related Publications

M Kricker, and B G Hall
October 2011, Applied microbiology and biotechnology,
M Kricker, and B G Hall
March 1977, Molecular & general genetics : MGG,
M Kricker, and B G Hall
January 1989, Journal of cell science. Supplement,
M Kricker, and B G Hall
June 1987, Journal of bacteriology,
M Kricker, and B G Hall
March 1982, Journal of general microbiology,
Copied contents to your clipboard!