Cryptic genes for cellobiose utilization in natural isolates of Escherichia coli. 1987

B G Hall, and P W Betts

The ECOR collection of natural Escherichia coli isolates was screened to determine the proportion of strains that carried functional, cryptic and nonfunctional genes for utilization of the three beta-glucoside sugars, arbutin, salicin and cellobiose. None of the 71 natural isolates utilized any of the beta-glucosides. Each strain was subjected to selection for utilization of each of the sugars. Only five of the isolates were incapable of yielding spontaneous beta-glucoside-utilizing mutants. Forty-five strains yielded cellobiose+ mutants, 62 yielded arbutin+ mutants, and 58 strains yielded salicin+ mutants. A subset of the mutants was screen by mRNA hybridization to determine whether they were expressing either the cel or the bgl beta-glucoside utilization operons of E. coli K12. Two cellobiose+ and two arbutin+-salicin+ strains failed to express either of these known operons. It is concluded that there are at least four gene clusters specifying beta-glucoside utilization functions in E. coli populations, and that all of these are normally cryptic. It is estimated that in any random isolate the probability of any particular cluster having been irreversibly inactivated by the accumulation of random mutations is about 0.5.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002475 Cellobiose A disaccharide consisting of two glucose units in beta (1-4) glycosidic linkage. Obtained from the partial hydrolysis of cellulose. 4-O-beta-D-Glucopyranosyl-D-glucopyranose,4 O beta D Glucopyranosyl D glucopyranose
D004187 Disaccharides Oligosaccharides containing two monosaccharide units linked by a glycosidic bond. Disaccharide
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

B G Hall, and P W Betts
June 1987, Journal of bacteriology,
B G Hall, and P W Betts
October 2011, Applied microbiology and biotechnology,
B G Hall, and P W Betts
June 1981, Applied and environmental microbiology,
B G Hall, and P W Betts
February 1984, Molecular biology and evolution,
B G Hall, and P W Betts
January 2012, Enzyme and microbial technology,
B G Hall, and P W Betts
September 1982, Journal of general microbiology,
Copied contents to your clipboard!