Haematopoietic stem cell gene therapy in inborn errors of metabolism. 2022

Robert Chiesa, and Maria Ester Bernardo
Bone Marrow Transplantation Department, Great Ormond Street Hospital for Sick Children NHS Foundation Trust, London, UK.

Over the last 30 years, allogeneic haematopoietic stem cell transplantation (allo-HSCT) has been adopted as a therapeutic strategy for many inborn errors of metabolism (IEM), due to the ability of donor-derived cells to provide life-long enzyme delivery to deficient tissues and organs. However, (a) the clinical benefit of allo-HSCT is limited to a small number of IEM, (b) patients are left with a substantial residual disease burden and (c) allo-HSCT is still associated with significant short- and long-term toxicities and transplant-related mortality. Haematopoietic stem/progenitor cell gene therapy (HSPC-GT) was established in the 1990s for the treatment of selected monogenic primary immunodeficiencies and over the past few years, its use has been extended to a number of IEM. HSPC-GT is particularly attractive in neurodegenerative IEM, as gene corrected haematopoietic progenitors can deliver supra-physiological enzyme levels to difficult-to-reach areas, such as the brain and the skeleton, with potential increased clinical benefit. Moreover, HSPC-GT is associated with reduced morbidity and mortality compared to allo-HSCT, although this needs to be balanced against the potential risk of insertional mutagenesis. The number of clinical trials in the IEM field is rapidly increasing and some HSPC-GT products recently received market approval. This review describes the development of ex vivo HSPC-GT in a number of IEM, with a focus on recent results from GT clinical trials and risks versus benefits considerations, when compared to established therapeutic strategies, such as allo-HSCT.

UI MeSH Term Description Entries
D008661 Metabolism, Inborn Errors Errors in metabolic processes resulting from inborn genetic mutations that are inherited or acquired in utero. Inborn Errors of Metabolism,Metabolism Errors, Inborn,Error, Inborn Metabolism,Errors Metabolism, Inborn,Errors Metabolisms, Inborn,Errors, Inborn Metabolism,Inborn Errors Metabolism,Inborn Errors Metabolisms,Inborn Metabolism Error,Inborn Metabolism Errors,Metabolism Error, Inborn,Metabolism Inborn Error,Metabolism Inborn Errors,Metabolisms, Inborn Errors
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014184 Transplantation, Homologous Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals. Transplantation, Allogeneic,Allogeneic Grafting,Allogeneic Transplantation,Allografting,Homografting,Homologous Transplantation,Grafting, Allogeneic
D015316 Genetic Therapy Techniques and strategies which include the use of coding sequences and other conventional or radical means to transform or modify cells for the purpose of treating or reversing disease conditions. Gene Therapy,Somatic Gene Therapy,DNA Therapy,Gene Therapy, Somatic,Genetic Therapy, Gametic,Genetic Therapy, Somatic,Therapy, DNA,Therapy, Gene,Therapy, Somatic Gene,Gametic Genetic Therapies,Gametic Genetic Therapy,Genetic Therapies,Genetic Therapies, Gametic,Genetic Therapies, Somatic,Somatic Genetic Therapies,Somatic Genetic Therapy,Therapies, Gametic Genetic,Therapies, Genetic,Therapies, Somatic Genetic,Therapy, Gametic Genetic,Therapy, Genetic,Therapy, Somatic Genetic
D018380 Hematopoietic Stem Cell Transplantation Transfer of HEMATOPOIETIC STEM CELLS from BONE MARROW or BLOOD between individuals within the same species (TRANSPLANTATION, HOMOLOGOUS) or transfer within the same individual (TRANSPLANTATION, AUTOLOGOUS). Hematopoietic stem cell transplantation has been used as an alternative to BONE MARROW TRANSPLANTATION in the treatment of a variety of neoplasms. Stem Cell Transplantation, Hematopoietic,Transplantation, Hematopoietic Stem Cell

Related Publications

Robert Chiesa, and Maria Ester Bernardo
November 2016, Current opinion in hematology,
Robert Chiesa, and Maria Ester Bernardo
January 2006, Journal of inherited metabolic disease,
Robert Chiesa, and Maria Ester Bernardo
May 2014, Anales de pediatria (Barcelona, Spain : 2003),
Robert Chiesa, and Maria Ester Bernardo
January 2019, Frontiers in pediatrics,
Robert Chiesa, and Maria Ester Bernardo
January 2005, Molecular genetics and metabolism,
Robert Chiesa, and Maria Ester Bernardo
January 2003, Nihon rinsho. Japanese journal of clinical medicine,
Robert Chiesa, and Maria Ester Bernardo
January 1986, Cold Spring Harbor symposia on quantitative biology,
Robert Chiesa, and Maria Ester Bernardo
June 2014, Medicina clinica,
Robert Chiesa, and Maria Ester Bernardo
April 1988, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!