Trilobatin promotes angiogenesis after cerebral ischemia-reperfusion injury via SIRT7/VEGFA signaling pathway in rats. 2022

Fengying Huang, and Lingyu Luo, and Yujia Wu, and Dianya Xia, and Fan Xu, and Jianmei Gao, and Jingshan Shi, and Qihai Gong
Key Laboratory of Basic Pharmacology of Ministry of Education and Guizhou Province, Zunyi Medical University, Zunyi, China.

Angiogenesis plays a pivotal role in the recovery of neurological function after ischemia stroke. Herein, we investigated the effect of trilobatin (TLB) on angiogenesis after cerebral ischemia-reperfusion injury (CIRI). The effect of TLB on angiogenesis after CIRI were investigated in mouse brain microvascular endothelium bEnd.3 cells and middle cerebral artery occlusion (MCAO)-induced CIRI rat model. The cell proliferation and angiogenesis were observed using immunofluorescence staining. The cell cycle, expressions of cell cycle-related proteins and SIRT 1-7 were determined by flow cytometry and western blot, respectively. The binding affinity of TLB with SIRT7 was predicted by molecular docking. The results showed that TLB concentration-dependently promoted bEnd.3 cell proportion in the S-phase. TLB significantly increased the protein expressions of SIRT6, SIRT7, and VEGFA, but not affected SIRT1-SIRT5 protein expressions. Moreover, TLB not only dramatically alleviated neurological impairment after CIRI, but also enhanced post-stroke neovascularization and newly formed functional vessels in cerebral ischemic penumbra. Furthermore, TLB up-regulated the protein expressions of CDK4, cyclin D1, VEGFA and its receptor VEGFR-2. Intriguingly, TLB not only directly bound to SIRT7, but also increased SIRT7 expression at day 28. Our findings reveal that TLB promotes cerebral microvascular endothelial cells proliferation, and facilitates angiogenesis after CIRI via mediating SIRT7/VEGFA signaling pathway in rats. Therefore, TLB might be a novel restorative agent to rescue ischemia stroke.

UI MeSH Term Description Entries
D009389 Neovascularization, Pathologic A pathologic process consisting of the proliferation of blood vessels in abnormal tissues or in abnormal positions. Angiogenesis, Pathologic,Angiogenesis, Pathological,Neovascularization, Pathological,Pathologic Angiogenesis,Pathologic Neovascularization,Pathological Angiogenesis,Pathological Neovascularization
D005419 Flavonoids A group of phenyl benzopyrans named for having structures like FLAVONES. 2-Phenyl-Benzopyran,2-Phenyl-Chromene,Bioflavonoid,Bioflavonoids,Flavonoid,2-Phenyl-Benzopyrans,2-Phenyl-Chromenes,2 Phenyl Benzopyran,2 Phenyl Benzopyrans,2 Phenyl Chromene,2 Phenyl Chromenes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015427 Reperfusion Injury Adverse functional, metabolic, or structural changes in tissues that result from the restoration of blood flow to the tissue (REPERFUSION) following ISCHEMIA. Ischemia-Reperfusion Injury,Injury, Ischemia-Reperfusion,Injury, Reperfusion,Reperfusion Damage,Damage, Reperfusion,Injury, Ischemia Reperfusion,Ischemia Reperfusion Injury,Ischemia-Reperfusion Injuries,Reperfusion Damages,Reperfusion Injuries
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D042461 Vascular Endothelial Growth Factor A The original member of the family of endothelial cell growth factors referred to as VASCULAR ENDOTHELIAL GROWTH FACTORS. Vascular endothelial growth factor-A was originally isolated from tumor cells and referred to as "tumor angiogenesis factor" and "vascular permeability factor". Although expressed at high levels in certain tumor-derived cells it is produced by a wide variety of cell types. In addition to stimulating vascular growth and vascular permeability it may play a role in stimulating VASODILATION via NITRIC OXIDE-dependent pathways. Alternative splicing of the mRNA for vascular endothelial growth factor A results in several isoforms of the protein being produced. Vascular Endothelial Growth Factor,Vascular Endothelial Growth Factor-A,GD-VEGF,Glioma-Derived Vascular Endothelial Cell Growth Factor,VEGF,VEGF-A,Vascular Permeability Factor,Vasculotropin,Glioma Derived Vascular Endothelial Cell Growth Factor,Permeability Factor, Vascular
D042783 Endothelial Cells Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer. Capillary Endothelial Cells,Lymphatic Endothelial Cells,Vascular Endothelial Cells,Capillary Endothelial Cell,Cell, Capillary Endothelial,Cell, Endothelial,Cell, Lymphatic Endothelial,Cell, Vascular Endothelial,Cells, Capillary Endothelial,Cells, Endothelial,Cells, Lymphatic Endothelial,Cells, Vascular Endothelial,Endothelial Cell,Endothelial Cell, Capillary,Endothelial Cell, Lymphatic,Endothelial Cell, Vascular,Endothelial Cells, Capillary,Endothelial Cells, Lymphatic,Endothelial Cells, Vascular,Lymphatic Endothelial Cell,Vascular Endothelial Cell
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Fengying Huang, and Lingyu Luo, and Yujia Wu, and Dianya Xia, and Fan Xu, and Jianmei Gao, and Jingshan Shi, and Qihai Gong
December 2023, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Fengying Huang, and Lingyu Luo, and Yujia Wu, and Dianya Xia, and Fan Xu, and Jianmei Gao, and Jingshan Shi, and Qihai Gong
January 2018, BMC anesthesiology,
Fengying Huang, and Lingyu Luo, and Yujia Wu, and Dianya Xia, and Fan Xu, and Jianmei Gao, and Jingshan Shi, and Qihai Gong
September 2023, Phytomedicine : international journal of phytotherapy and phytopharmacology,
Fengying Huang, and Lingyu Luo, and Yujia Wu, and Dianya Xia, and Fan Xu, and Jianmei Gao, and Jingshan Shi, and Qihai Gong
February 2021, Journal of neurosurgical sciences,
Fengying Huang, and Lingyu Luo, and Yujia Wu, and Dianya Xia, and Fan Xu, and Jianmei Gao, and Jingshan Shi, and Qihai Gong
January 2013, International journal of molecular medicine,
Fengying Huang, and Lingyu Luo, and Yujia Wu, and Dianya Xia, and Fan Xu, and Jianmei Gao, and Jingshan Shi, and Qihai Gong
July 2012, Neurochemical research,
Fengying Huang, and Lingyu Luo, and Yujia Wu, and Dianya Xia, and Fan Xu, and Jianmei Gao, and Jingshan Shi, and Qihai Gong
December 2022, Aging,
Fengying Huang, and Lingyu Luo, and Yujia Wu, and Dianya Xia, and Fan Xu, and Jianmei Gao, and Jingshan Shi, and Qihai Gong
March 2023, Brain and behavior,
Fengying Huang, and Lingyu Luo, and Yujia Wu, and Dianya Xia, and Fan Xu, and Jianmei Gao, and Jingshan Shi, and Qihai Gong
October 2022, Zhen ci yan jiu = Acupuncture research,
Fengying Huang, and Lingyu Luo, and Yujia Wu, and Dianya Xia, and Fan Xu, and Jianmei Gao, and Jingshan Shi, and Qihai Gong
August 2017, Biochemistry and cell biology = Biochimie et biologie cellulaire,
Copied contents to your clipboard!