Reflex pathways from group II muscle afferents. 3. Secondary spindle afferents and the FRA: a new hypothesis. 1987

A Lundberg, and K Malmgren, and E D Schomburg

A hypothesis is forwarded regarding the role of secondary spindle afferents and the FRA (flexor reflex afferents) in motor control. The hypothesis is based on evidence (cf. Lundberg et al. 1987a, b) summarized in 9 introductory paragraphs. Group II excitation. It is postulated that subsets of excitatory group II interneurones (transmitting disynaptic group II excitation to motoneurones) may be used by the brain to mediate motor commands. It is assumed that the brain selects subsets of interneurones with convergence of secondary afferents from muscles whose activity is required for the movement. During movements depending on coactivation of static gamma-motoneurones impulses in secondary afferents may servo-control transmission to alpha-motoneurones at an interneuronal level. The large group II unitary EPSPs in interneurones are taken to indicate that, given an adequate interneuronal excitability, impulses in single secondary afferents may fire the interneurone and produce EPSPs in motoneurones; interneuronal transmission would then be equivalent to that in a monosynaptic pathway but with impulses from different muscles combining into one line. It is postulated that impulses in the FRA are evoked by the active movements and that the role of the multisensory convergence from the FRA onto the group II interneurones is to provide the high background excitability which allows the secondary spindle afferents to operate as outlined above. The working hypothesis is put forward that a movement governed by the excitatory group II interneurones is initiated by descending activation of these interneurones, but is maintained in a later phase by the combined effect of FRA activity evoked by the movement and by spindle secondaries activated by descending activation of static gamma-motoneurones. As in the original "follow up length servo" hypothesis (Rossi 1927; Merton 1953), we assume that a movement at least in a certain phase can be governed from the brain solely or mainly via static gamma-motoneurones. However, our hypothesis implies that the excitatory group II reflex connexions have a strength which does not allow transmission to motoneurones at rest and that the increase in the gain of transmission during an active movement is supplied by the movement itself. Group II inhibition. It is suggested that the inhibitory reflex pathways like the excitatory ones have subsets of interneurones with limited group II convergence. When higher centres utilize a subset of excitatory group II interneurones to evoke a given movement, there may mobilize inhibitory subsets to inhibit muscles not required in the movement.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate

Related Publications

A Lundberg, and K Malmgren, and E D Schomburg
May 1983, The Journal of physiology,
A Lundberg, and K Malmgren, and E D Schomburg
December 2000, Neuroscience research,
A Lundberg, and K Malmgren, and E D Schomburg
February 2000, The European journal of neuroscience,
A Lundberg, and K Malmgren, and E D Schomburg
September 2010, The European journal of neuroscience,
A Lundberg, and K Malmgren, and E D Schomburg
January 1988, Experimental brain research,
A Lundberg, and K Malmgren, and E D Schomburg
April 2008, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Lundberg, and K Malmgren, and E D Schomburg
January 1969, Pflugers Archiv : European journal of physiology,
A Lundberg, and K Malmgren, and E D Schomburg
January 1972, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!