Biochemical quantitation and histochemical localization of carboxylesterase in the nasal passages of the Fischer-344 rat and B6C3F1 mouse. 1987

M S Bogdanffy, and H W Randall, and K T Morgan

Inhalation exposure of rats and mice to glycol ether acetates and acrylate esters causes degeneration of the olfactory epithelium but not of the respiratory epithelium. Since these compounds are metabolized via carboxylesterase to acids that are toxic to the olfactory epithelium, the activity and cellular distribution of carboxylesterase in the nasal passages of rats and mice were studied. Olfactory mucosal carboxylesterase in both rats and mice was found to have a Vmax value for the hydrolysis of p-nitrophenyl butyrate approximately 3 to 6 times larger than that for respiratory mucosa. Similarly, the second-order rate constant for binding and catalysis, V/K, was approximately four times greater in olfactory mucosa than in respiratory mucosa of both rats and mice. These data demonstrate that the olfactory mucosa of rats and mice hydrolyze carboxylesters more efficiently than the respiratory mucosae. Enzyme histochemistry was employed to identify the individual cells within the respiratory and olfactory mucosae which contain carboxylesterase activity. All cell types of the respiratory epithelium had some carboxylesterase activity, with varying intensities between individual cell populations. Ciliated and cuboidal epithelial cells were most active in this region. In the olfactory mucosa, however, Bowman's glands stained most intensely, sustentacular cells demonstrated moderate activity, and no activity was detectable in olfactory sensory cells. Together, these data quantitate carboxylesterase activity in nasal mucosal homogenates and localize the enzyme in individual cell types. The data suggest that olfactory mucosa may metabolize carboxylesters to acids more readily than respiratory mucosa. However, such metabolism does not occur in the target cell population, the olfactory sensory neurons, raising the possibility of intercellular migration of toxic acid metabolites.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009297 Nasal Mucosa The mucous lining of the NASAL CAVITY, including lining of the nostril (vestibule) and the OLFACTORY MUCOSA. Nasal mucosa consists of ciliated cells, GOBLET CELLS, brush cells, small granule cells, basal cells (STEM CELLS) and glands containing both mucous and serous cells. Nasal Epithelium,Schneiderian Membrane,Epithelium, Nasal,Membrane, Schneiderian,Mucosa, Nasal
D009831 Olfactory Mucosa That portion of the nasal mucosa containing the sensory nerve endings for SMELL, located at the dome of each NASAL CAVITY. The yellow-brownish olfactory epithelium consists of OLFACTORY RECEPTOR NEURONS; brush cells; STEM CELLS; and the associated olfactory glands. Olfactory Epithelium,Olfactory Membrane,Epithelium, Olfactory,Membrane, Olfactory,Membranes, Olfactory,Mucosa, Olfactory,Olfactory Membranes
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002087 Butyrates Derivatives of BUTYRIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxypropane structure. Butyrate,n-Butyrate,Butanoic Acids,Butyric Acids,Acids, Butanoic,Acids, Butyric,n Butyrate
D002265 Carboxylic Ester Hydrolases Enzymes which catalyze the hydrolysis of carboxylic acid esters with the formation of an alcohol and a carboxylic acid anion. Carboxylesterases,Ester Hydrolases, Carboxylic,Hydrolases, Carboxylic Ester
D005260 Female Females
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M S Bogdanffy, and H W Randall, and K T Morgan
December 1992, Xenobiotica; the fate of foreign compounds in biological systems,
M S Bogdanffy, and H W Randall, and K T Morgan
February 2004, Xenobiotica; the fate of foreign compounds in biological systems,
M S Bogdanffy, and H W Randall, and K T Morgan
February 1998, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
M S Bogdanffy, and H W Randall, and K T Morgan
March 1997, Drug metabolism and disposition: the biological fate of chemicals,
M S Bogdanffy, and H W Randall, and K T Morgan
January 1976, Acta histochemica. Supplementband,
M S Bogdanffy, and H W Randall, and K T Morgan
January 2005, Journal of analytical toxicology,
M S Bogdanffy, and H W Randall, and K T Morgan
January 1983, Drug metabolism and disposition: the biological fate of chemicals,
M S Bogdanffy, and H W Randall, and K T Morgan
August 1987, Environmental health perspectives,
M S Bogdanffy, and H W Randall, and K T Morgan
January 2019, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
M S Bogdanffy, and H W Randall, and K T Morgan
May 1996, Fundamental and applied toxicology : official journal of the Society of Toxicology,
Copied contents to your clipboard!