The absorption, tissue distribution and excretion of di-n-octyltin dichloride in rats. 1987

A H Penninks, and L Hilgers, and W Seinen

In this study the absorption, tissue distribution and excretion of 14C-labeled di-n-octyltin dichloride ([14C]DOTC) in rats were investigated after oral and intravenous (i.v.) administration. Although after i.v. administration with 1.2 mg [14C]DOTC/kg body weight the tissue radioactivity was about 3-4 times higher than after oral administration with 6.3 mg [14C]DOTC/kg body weight, the relative tissue accumulation was found to be the same after the oral and i.v. dosage. The highest amount of radioactivity was found in liver and kidney, and to a lesser degree in adrenal, pituitary and thyroid glands. The lowest activity was recovered from blood and brain. No selective accumulation was observed in thymus, although it has been reported that thymus atrophy is the most sensitive parameter of DOTC toxicity in rats. For all tissues a time dependent decrease in radioactivity was found, except for kidney. The excretion of radioactivity in feces and urine was determined after a single i.v. or oral dose of 1.2 and 2 mg [14C]DOTC, respectively. After i.v. administration most of the radioactivity was excreted in the feces which was characterized by a biphasic excretion pattern. In orally treated rats more than 80% of the radioactivity was already excreted in the feces during the first day after administration. This indicated that only a small part of the DOTC was absorbed, which was calculated to be approximately 20% of the dose. Similar half-life values of 8.3 and 8.9 days were obtained from the fecal excretion of radioactivity after the i.v. and oral administration, respectively. The urinary excretion of radioactivity appeared to be independent of the body burden, since the daily amount of radioactivity excreted in urine was nearly the same independent of the route of administration as well as the time after administration.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D008297 Male Males
D009947 Organotin Compounds Organic compounds which contain tin in the molecule. Used widely in industry and agriculture. Compounds, Organotin
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D005243 Feces Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
D000042 Absorption The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

A H Penninks, and L Hilgers, and W Seinen
November 2011, Reproductive toxicology (Elmsford, N.Y.),
A H Penninks, and L Hilgers, and W Seinen
August 1986, Arzneimittel-Forschung,
A H Penninks, and L Hilgers, and W Seinen
March 2024, Toxicology mechanisms and methods,
A H Penninks, and L Hilgers, and W Seinen
January 1979, Archives of toxicology. Supplement. = Archiv fur Toxikologie. Supplement,
A H Penninks, and L Hilgers, and W Seinen
January 1989, International journal of immunopharmacology,
A H Penninks, and L Hilgers, and W Seinen
February 1990, Toxicology letters,
A H Penninks, and L Hilgers, and W Seinen
November 1991, Toxicology letters,
A H Penninks, and L Hilgers, and W Seinen
November 2003, Journal of agricultural and food chemistry,
Copied contents to your clipboard!