GpsB Coordinates Cell Division and Cell Surface Decoration by Wall Teichoic Acids in Staphylococcus aureus. 2022

Lauren R Hammond, and Michael D Sacco, and Sebastian J Khan, and Catherine Spanoudis, and Abigail Hough-Neidig, and Yu Chen, and Prahathees J Eswara
Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA.

Bacterial cell division is a complex and highly regulated process requiring the coordination of many different proteins. Despite substantial work in model organisms, our understanding of the systems regulating cell division in noncanonical organisms, including critical human pathogens, is far from complete. One such organism is Staphylococcus aureus, a spherical bacterium that lacks known cell division regulatory proteins. Recent studies on GpsB, a protein conserved within the Firmicutes phylum, have provided insight into cell division regulation in S. aureus and other related organisms. It has been revealed that GpsB coordinates cell division and cell wall synthesis in multiple species. In S. aureus, we have previously shown that GpsB directly regulates FtsZ polymerization. In this study, using Bacillus subtilis as a tool, we isolated spontaneous suppressors that abrogate the lethality of S. aureus GpsB overproduction in B. subtilis. Through characterization, we identified several residues important for the function of GpsB. Furthermore, we discovered an additional role for GpsB in wall teichoic acid (WTA) biosynthesis in S. aureus. Specifically, we show that GpsB directly interacts with the WTA export protein TarG. We also identified a region in GpsB that is crucial for this interaction. Analysis of TarG localization in S. aureus suggests that WTA machinery is part of the divisome complex. Taken together, this research illustrates how GpsB performs an essential function in S. aureus by directly linking the tightly regulated cell cycle processes of cell division and WTA-mediated cell surface decoration. IMPORTANCE Cytokinesis in bacteria involves an intricate orchestration of several key cell division proteins and other factors involved in building a robust cell envelope. Presence of teichoic acids is a signature characteristic of the Gram-positive cell wall. By characterizing the role of Staphylococcus aureus GpsB, an essential cell division protein in this organism, we have uncovered an additional role for GpsB in wall teichoic acid (WTA) biosynthesis. We show that GpsB directly interacts with TarG of the WTA export complex. We also show that this function of GpsB may be conserved in other GpsB homologs as GpsB and the WTA exporter complex follow similar localization patterns. It has been suggested that WTA acts as a molecular signal to control the activity of autolytic enzymes, especially during the separation of conjoined daughter cells. Thus, our results reveal that GpsB, in addition to playing a role in cell division, may also help coordinate WTA biogenesis.

UI MeSH Term Description Entries

Related Publications

Lauren R Hammond, and Michael D Sacco, and Sebastian J Khan, and Catherine Spanoudis, and Abigail Hough-Neidig, and Yu Chen, and Prahathees J Eswara
January 2016, Methods in molecular biology (Clifton, N.J.),
Lauren R Hammond, and Michael D Sacco, and Sebastian J Khan, and Catherine Spanoudis, and Abigail Hough-Neidig, and Yu Chen, and Prahathees J Eswara
January 2017, Nature microbiology,
Lauren R Hammond, and Michael D Sacco, and Sebastian J Khan, and Catherine Spanoudis, and Abigail Hough-Neidig, and Yu Chen, and Prahathees J Eswara
May 2011, Investigative ophthalmology & visual science,
Lauren R Hammond, and Michael D Sacco, and Sebastian J Khan, and Catherine Spanoudis, and Abigail Hough-Neidig, and Yu Chen, and Prahathees J Eswara
June 1973, Acta pathologica et microbiologica Scandinavica. Section B: Microbiology and immunology,
Lauren R Hammond, and Michael D Sacco, and Sebastian J Khan, and Catherine Spanoudis, and Abigail Hough-Neidig, and Yu Chen, and Prahathees J Eswara
March 2008, Microbiology (Reading, England),
Lauren R Hammond, and Michael D Sacco, and Sebastian J Khan, and Catherine Spanoudis, and Abigail Hough-Neidig, and Yu Chen, and Prahathees J Eswara
November 2012, Proceedings of the National Academy of Sciences of the United States of America,
Lauren R Hammond, and Michael D Sacco, and Sebastian J Khan, and Catherine Spanoudis, and Abigail Hough-Neidig, and Yu Chen, and Prahathees J Eswara
March 2017, Nature microbiology,
Lauren R Hammond, and Michael D Sacco, and Sebastian J Khan, and Catherine Spanoudis, and Abigail Hough-Neidig, and Yu Chen, and Prahathees J Eswara
August 2022, Microbiology spectrum,
Lauren R Hammond, and Michael D Sacco, and Sebastian J Khan, and Catherine Spanoudis, and Abigail Hough-Neidig, and Yu Chen, and Prahathees J Eswara
January 2016, ACS chemical biology,
Lauren R Hammond, and Michael D Sacco, and Sebastian J Khan, and Catherine Spanoudis, and Abigail Hough-Neidig, and Yu Chen, and Prahathees J Eswara
September 1977, Journal of clinical microbiology,
Copied contents to your clipboard!