Scanning calorimetric study of fully hydrated asymmetric phosphatidylcholines with one acyl chain twice as long as the other. 1987

H Xu, and C H Huang

The asymmetric C(18):C(10)PC molecules are known by X-ray diffraction to self-assemble, in excess water, into a lamellar structure known as the mixed interdigitated bilayer at T less than Tm. In this structure, the long C(18)-acyl chain is interdigitated fully across the entire hydrocarbon width of the bilayer, while the shorter C(10)-acyl chain, which is about half as long as the C(18)-acyl chain, packs end to end with a C(10)-acyl chain of another lipid molecule in the opposing bilayer leaflet. We have synthesized the following asymmetric phosphatidylcholines (PC's): C(16):C(9)PC, C(16):C(10)PC, C(18):C(10)PC, C(18):C(11)PC, C(20):C(11)PC, C(20):C(12)PC, C(22):C(12)PC, C(22):C(13)PC, C(8):C(18)PC, and C(10):C(22)PC. These 10 asymmetric phosphatidylcholines have a common characteristic; i.e., the length of the longer extended acyl chain is about twice as long as that of the shorter acyl chain. On the basis of the known lamellar structure of C(18):C(10)PC, we anticipate that these asymmetric phosphatidylcholines will also form mixed interdigitated bilayers. We have employed high-resolution differential scanning calorimetry (DSC) to investigate the thermotropic behavior of liposomes prepared from these asymmetric phosphatidylcholines. If our anticipation is correct, one would find that the thermodynamic data (Tm, delta H, or delta S) associated with the main thermal phase transitions of these asymmetric phosphatidylcholine dispersions will fit into a continuous curve as they are plotted as a function of the hydrocarbon width of the putative mixed interdigitated bilayer. Experimental data presented in this paper indeed bear this out. For comparison, a DSC study of multilamellar dispersions prepared from a series of saturated symmetric phosphatidylcholines has also been carried out.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

H Xu, and C H Huang
February 1993, Biochimica et biophysica acta,
H Xu, and C H Huang
March 1986, Biochimica et biophysica acta,
Copied contents to your clipboard!