Impaired androgen 16 alpha-hydroxylation in hepatic microsomes from carbon tetrachloride-cirrhotic male rats. 1987

M Murray, and L Zaluzny, and G C Farrell

Hepatic cirrhosis produced by repeated inhalation of carbon tetrachloride is associated with reduced levels of microsomal cytochrome P450. In this study the C19-steroids androstenedione and testosterone were used as specific probes of the functional activity of several forms of cytochrome P450 in microsomal fractions from control and cirrhotic rat liver. The principal finding, that androstenedione 16 alpha-hydroxylation and testosterone 2 alpha-, 16 alpha-, and 17 alpha-hydroxylation were reduced to 14%-38% of control activity, strongly suggests that levels of the male sexually differentiated cytochrome P450 (P(450)16 alpha) are decreased in hepatic cirrhosis. The activity of other cytochrome P450-mediated C19-steroid hydroxylases, with the exception of androstenedione 6 beta-hydroxylase, appeared essentially unaltered in microsomes from cirrhotic rats. Cirrhosis induced by carbon tetrachloride was also associated with greatly decreased activity of the microsomal cytochrome P450-independent 17 beta-oxidoreductase, an enzyme that catalyzes the conversion of androstenedione to testosterone. Consequently, and in view of the impaired activity of cytochrome P450-mediated testosterone 17 alpha-hydroxylation, the capacity of cirrhotic microsomes to catalyze the interconversion of androstenedione and testosterone was much lower than that of control microsomes. The present data confirm and extend earlier observations that selective impairment of drug oxidation pathways occurs in hepatic cirrhosis. These changes are unrelated to the acute toxicity produced by carbon tetrachloride exposure. The available evidence supports the assertion that specific forms of cytochrome P450 are subject to altered regulation in cirrhosis.

UI MeSH Term Description Entries
D008106 Liver Cirrhosis, Experimental Experimentally induced chronic injuries to the parenchymal cells in the liver to achieve a model for LIVER CIRRHOSIS. Hepatic Cirrhosis, Experimental,Cirrhoses, Experimental Liver,Cirrhosis, Experimental Liver,Experimental Liver Cirrhoses,Experimental Liver Cirrhosis,Liver Cirrhoses, Experimental,Experimental Hepatic Cirrhosis
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002251 Carbon Tetrachloride A solvent for oils, fats, lacquers, varnishes, rubber waxes, and resins, and a starting material in the manufacturing of organic compounds. Poisoning by inhalation, ingestion or skin absorption is possible and may be fatal. (Merck Index, 11th ed) Tetrachloromethane,Tetrachloride, Carbon
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006900 Hydroxylation Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed) Hydroxylations
D000072467 Cytochrome P450 Family 2 A cytochrome P450 enzyme family that includes members which function in the metabolism of STEROIDS; COUMARINS; and NICOTINE. CYP2 Enzymes,CYP2 Family
D000728 Androgens Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power. Androgen,Androgen Receptor Agonist,Androgen Effect,Androgen Effects,Androgen Receptor Agonists,Androgenic Agents,Androgenic Compounds,Agents, Androgenic,Agonist, Androgen Receptor,Agonists, Androgen Receptor,Compounds, Androgenic,Effect, Androgen,Effects, Androgen,Receptor Agonist, Androgen,Receptor Agonists, Androgen
D000735 Androstenedione A delta-4 C19 steroid that is produced not only in the TESTIS, but also in the OVARY and the ADRENAL CORTEX. Depending on the tissue type, androstenedione can serve as a precursor to TESTOSTERONE as well as ESTRONE and ESTRADIOL. 4-Androstene-3,17-dione,delta-4-Androstenedione,4 Androstene 3,17 dione,delta 4 Androstenedione

Related Publications

M Murray, and L Zaluzny, and G C Farrell
July 1990, Xenobiotica; the fate of foreign compounds in biological systems,
M Murray, and L Zaluzny, and G C Farrell
December 1988, Circulatory shock,
M Murray, and L Zaluzny, and G C Farrell
January 1973, Biochemical and biophysical research communications,
M Murray, and L Zaluzny, and G C Farrell
March 2000, Zhonghua yi xue za zhi = Chinese medical journal; Free China ed,
M Murray, and L Zaluzny, and G C Farrell
August 1981, Hepato-gastroenterology,
M Murray, and L Zaluzny, and G C Farrell
January 1969, Gerontologia,
M Murray, and L Zaluzny, and G C Farrell
January 1985, Toxicology letters,
M Murray, and L Zaluzny, and G C Farrell
May 1969, Bollettino della Societa italiana di biologia sperimentale,
Copied contents to your clipboard!