Insulin-like growth factor I stimulates human erythroid colony formation in vitro. 1987

M Claustres, and P Chatelain, and C Sultan

The effects of human GH and insulin-like growth factor I on the proliferation and differentiation of erythroid progenitor cells from the bone marrow and peripheral blood of children were studied in a hormone-depleted culture system. Growth of erythroid progenitors was quantified by directly scoring colonies and by biochemical determination of the activity of a cytosolic enzyme of the heme pathway, uroporphyrinogen I synthase. In the presence of erythropoietin, high concentrations (50-100 ng/mL) of human GH induced an increase in the number of erythroid colonies (and their uroporphyrinogen I synthase activity) formed by bone marrow or peripheral blood erythroid precursors. In the same conditions, physiological concentrations of insulin-like growth factor I (0.5-1 ng/mL) stimulated erythroid cell growth and differentiation (P less than 0.03) from bone marrow or peripheral blood.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D011163 Hydroxymethylbilane Synthase An enzyme that catalyzes the tetrapolymerization of the monopyrrole PORPHOBILINOGEN into the hydroxymethylbilane preuroporphyrinogen (UROPORPHYRINOGENS) in several discrete steps. It is the third enzyme in the 8-enzyme biosynthetic pathway of HEME. In humans, deficiency in this enzyme encoded by HMBS (or PBGD) gene results in a form of neurological porphyria (PORPHYRIA, ACUTE INTERMITTENT). This enzyme was formerly listed as EC 4.3.1.8 Porphobilinogen Ammonia-Lyase,Porphobilinogen Deaminase,Uroporphyrinogen I Synthase,Hydroxymethylbilane Synthetase,Pre-uroporphyrinogen Synthetase,Preuroporphyrinogen Synthetase,Ammonia-Lyase, Porphobilinogen,Deaminase, Porphobilinogen,Porphobilinogen Ammonia Lyase,Pre uroporphyrinogen Synthetase,Synthase, Hydroxymethylbilane,Synthase, Uroporphyrinogen I,Synthetase, Hydroxymethylbilane,Synthetase, Pre-uroporphyrinogen,Synthetase, Preuroporphyrinogen
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D004920 Erythropoiesis The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction. Erythropoieses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M Claustres, and P Chatelain, and C Sultan
February 1983, British journal of haematology,
M Claustres, and P Chatelain, and C Sultan
May 1991, Experimental hematology,
M Claustres, and P Chatelain, and C Sultan
January 1988, Annals of the New York Academy of Sciences,
M Claustres, and P Chatelain, and C Sultan
November 2001, Oncogene,
M Claustres, and P Chatelain, and C Sultan
March 1982, Nature,
M Claustres, and P Chatelain, and C Sultan
January 1995, Experimental hematology,
M Claustres, and P Chatelain, and C Sultan
June 1992, International journal of hematology,
M Claustres, and P Chatelain, and C Sultan
October 1985, The Journal of clinical investigation,
M Claustres, and P Chatelain, and C Sultan
June 1986, European journal of pharmacology,
Copied contents to your clipboard!