Insulin-like growth factor binding protein-1 is elevated in patients with polycythemia vera and stimulates erythroid burst formation in vitro. 1997

A M Mirza, and S Ezzat, and A A Axelrad
Department of Anatomy and Cell Biology, University of Toronto, Ontario, Canada.

Previously, we found that, in the myeloproliferative disorder polycythemia vera (PV), circulating erythroid progenitor cells were hypersensitive to insulin-like growth factor I (IGF-I), an effect shown to occur through the IGF-I receptor. Also, in cells of PV patients, the IGF-I receptor was hyperphosphorylated on tyrosine residues under basal conditions, and its tyrosine phosphorylation in response to exogenous IGF-I was strongly augmented. Thus, because IGF-I appeared to play a role in the pathogenesis of PV, we wished to assess its level in the circulation of these patients. Normally, most of the circulating IGF-I is bound to specific high-affinity IGF binding proteins that can regulate its activity. We determined the circulating levels of IGF-I and two of its key binding proteins, IGFBP-1 and IGFBP-3. In two separate experiments, plasma samples from a total of 23 PV patients age- and sex-matched with 41 normal individuals were compared by radioimmunoassay. The levels of IGFBP-1 in patients with PV (37.80 +/- 4.33 microg/L) were more than fourfold higher than in normals (9.34 +/- 1.34 microg/L) or patients with secondary erythrocytosis (9.47 +/- 1.96 microg/L), whereas the plasma concentrations of IGFBP-3 and IGF-I in these patients were similar to those of normal subjects. Because circulating IGFBP-1 levels may be influenced by insulin, we measured the concentrations of insulin in the same samples. Our data showed that the elevation of circulating IGFBP-1 in PV could not be attributed to low levels of insulin in these patients. The substantial increase in concentration of IGFBP-1 was confirmed on ligand blots performed with (125)I-IGF-I. IGFBP-1 can be either inhibitory or stimulatory to the action of IGF-I under different conditions. We reasoned that if IGFBP-1 were stimulatory for erythropoiesis, an elevated IGFBP-1 level could help to explain the increased sensitivity to IGF-I observed in PV. If IGFBP-1 were inhibitory, it might suggest a compensatory mechanism in which a hyperphosphorylated IGF-I receptor in PV might induce a negative modulator of IGF-I action, in this case IGFBP-1. To distinguish between these two hypotheses, we titrated the effect of IGFBP-1 in the presence of IGF-I with respect to erythroid burst formation and found that IGFBP-1 was strikingly stimulatory. The elevated level of IGFBP-1 coupled with its ability to stimulate erythroid burst formation provide an attractive mechanism to account for the increased sensitivity of erythroid progenitor cells to IGF-I and the consequent overproduction of red blood cells characteristic of PV.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D011087 Polycythemia Vera A myeloproliferative disorder of unknown etiology, characterized by abnormal proliferation of all hematopoietic bone marrow elements and an absolute increase in red cell mass and total blood volume, associated frequently with splenomegaly, leukocytosis, and thrombocythemia. Hematopoiesis is also reactive in extramedullary sites (liver and spleen). In time myelofibrosis occurs. Erythremia,Osler-Vaquez Disease,Polycythemia Rubra Vera,Polycythemia Ruba Vera,Primary Polycythemia,Disease, Osler-Vaquez,Erythremias,Osler Vaquez Disease,Polycythemia Ruba Veras,Polycythemia Rubra Veras,Polycythemia, Primary,Polycythemias, Primary,Primary Polycythemias,Ruba Vera, Polycythemia,Ruba Veras, Polycythemia,Vera, Polycythemia Ruba,Vera, Polycythemia Rubra,Veras, Polycythemia Ruba,Veras, Polycythemia Rubra
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004920 Erythropoiesis The production of red blood cells (ERYTHROCYTES). In humans, erythrocytes are produced by the YOLK SAC in the first trimester; by the liver in the second trimester; by the BONE MARROW in the third trimester and after birth. In normal individuals, the erythrocyte count in the peripheral blood remains relatively constant implying a balance between the rate of erythrocyte production and rate of destruction. Erythropoieses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D018970 Insulin-Like Growth Factor Binding Protein 1 One of the six homologous proteins that specifically bind insulin-like growth factors (SOMATOMEDINS) and modulate their mitogenic and metabolic actions. The function of this protein is not completely defined. However, several studies demonstrate that it inhibits IGF binding to cell surface receptors and thereby inhibits IGF-mediated mitogenic and cell metabolic actions. (Proc Soc Exp Biol Med 1993;204(1):4-29) IGF-Binding Protein 1,IGFBP-1,IGF Binding Protein 1,Insulin Like Growth Factor Binding Protein 1
D018972 Insulin-Like Growth Factor Binding Protein 3 One of the six homologous soluble proteins that bind insulin-like growth factors (SOMATOMEDINS) and modulate their mitogenic and metabolic actions at the cellular level. IGF-Binding Protein 3,IGFBP-3,IGF Binding Protein 3,Protein 3, IGF-Binding

Related Publications

A M Mirza, and S Ezzat, and A A Axelrad
July 1987, The Journal of clinical endocrinology and metabolism,
A M Mirza, and S Ezzat, and A A Axelrad
July 2001, Molecular and cellular endocrinology,
A M Mirza, and S Ezzat, and A A Axelrad
January 2002, Acta oncologica (Stockholm, Sweden),
A M Mirza, and S Ezzat, and A A Axelrad
December 2003, Growth hormone & IGF research : official journal of the Growth Hormone Research Society and the International IGF Research Society,
A M Mirza, and S Ezzat, and A A Axelrad
February 2000, Clinical endocrinology,
A M Mirza, and S Ezzat, and A A Axelrad
August 1991, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!