Secretion and uptake of nascent hepatic very low density lipoprotein by perfused livers from fed and fasted rats. 1987

H G Wilcox, and M Heimberg

Livers from fed or 24-hr fasted male rats were perfused in a recycling system. VLDL labeled with [1-14C]oleate (95% in triglyceride), produced in separate perfusions of livers from fed rats, was added to the medium as a pulse. Uptake of VLDL 14C-labeled triglyceride by livers from fasted rats was less than that from fed rats regardless of addition of oleate. During the interval in which radioactive triglyceride was taken up, the mass of triglyceride in the medium increased, indicative of the synthesis and net secretion of triglycerides. The rates of secretion of VLDL and uptake of VLDL were both more rapid in livers from fed rats in comparison to those from fasted animals. It was calculated that about 50% of the triglyceride synthesized and secreted by the liver was taken back by livers from fed rats. The VLDL from livers of fasted rats did not contain any apoE detectable by SDS gel electrophoresis or by radioimmunoassay when no fatty acid or 166 mumol of oleic acid was infused. In contrast, apoE comprised 6% of the VLDL apoprotein derived from perfusion of livers from fed animals in the absence of added fatty acid, and 20% when the fed livers were infused with 166 mumol of oleic acid. However, the net output (accumulation) of apoE by fasted liver was only two-thirds that from fed livers. When lipoprotein-free rat plasma containing apoE (4 mg/dl) was used in place of bovine serum albumin, the VLDL secreted by livers from either fed or fasted rats contained apoE and was taken up to a similar extent by such livers. These data suggested that the apoE of the d greater than 1.21 g/ml fraction was transferred to newly secreted VLDL which then stimulated uptake of the VLDL by livers from fasted rats. With further stimulation of secretion of VLDL triglyceride by infusion of 332 mumol of oleic acid/hr, the percent of apoE in the VLDL secreted by livers from fasted rats increased to 20%, which was similar to that of the VLDL produced by livers from fed rats when either 166 or 332 mumol/hr was infused. These data suggest a relationship between rates of hepatic secretion of VLDL (TG) and apoE, and the association of apoE with the secreted VLDL. During fasting, reduced secretion of both VLDL and apoE resulted in a VLDL particle that was considerably diminished in content of apoE and, therefore, that would be taken up by the liver at a reduced rate, in comparison to that observed in the fed animal.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005215 Fasting Abstaining from FOOD. Hunger Strike,Hunger Strikes,Strike, Hunger,Strikes, Hunger
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001057 Apolipoproteins E A class of protein components which can be found in several lipoproteins including HIGH-DENSITY LIPOPROTEINS; VERY-LOW-DENSITY LIPOPROTEINS; and CHYLOMICRONS. Synthesized in most organs, Apo E is important in the global transport of lipids and cholesterol throughout the body. Apo E is also a ligand for LDL receptors (RECEPTORS, LDL) that mediates the binding, internalization, and catabolism of lipoprotein particles in cells. There are several allelic isoforms (such as E2, E3, and E4). Deficiency or defects in Apo E are causes of HYPERLIPOPROTEINEMIA TYPE III. Apo-E,Apo E,Apo E Isoproteins,ApoE,Apolipoprotein E Isoproteins,Apoprotein (E),Apoproteins E,Isoproteins, Apo E,Isoproteins, Apolipoprotein E
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

H G Wilcox, and M Heimberg
August 1981, The Biochemical journal,
H G Wilcox, and M Heimberg
March 1966, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
H G Wilcox, and M Heimberg
October 1982, The Journal of biological chemistry,
H G Wilcox, and M Heimberg
May 1990, The Biochemical journal,
H G Wilcox, and M Heimberg
April 1982, Biochimica et biophysica acta,
Copied contents to your clipboard!