Uptake and release of glycine in the guinea pig cochlear nucleus. 1987

C Staatz-Benson, and S J Potashner

This study attempts to determine if the cochlear nucleus (CN) contains glycinergic synaptic endings. The uptake and release of exogenous radiolabeled glycine were measured in vitro in the three major subdivisions of the guinea pig CN: anteroventral, posteroventral, and dorsal. A kinetic analysis of [3H]glycine uptake revealed the presence in each CN subdivision of a high- and a low-affinity uptake mechanism. The high-affinity mechanism had a Km of 25.2-30.5 microM and a Vmax of 3.8-4.8 nmol/10 mg of cell water/5 min, whereas the low-affinity mechanism had a Km of 633-718 microM and a Vmax of 26.6-37.1 nmol/10 mg of cell water/5 min. At steady state, the high-affinity mechanism accumulated 10 microM [3H]glycine from the medium, achieving tissue concentrations that were 13-24 times that in the medium. The high-affinity uptake was dependent on the temperature and on the concentrations of NaCl and glucose in the incubation medium. It exhibited a high degree of substrate specificity, as determined by the effects of structural analogues of glycine on the uptake of [3H]glycine. Each CN subdivision also contained two mechanisms mediating [14C]glycine release. One was activated by depolarizing electrical stimuli, produced a rapid transient release of [14C]glycine, and was dependent on the presence of extracellular Ca2+. The other was continuous, producing a slow spontaneous efflux of [14C]glycine. Released glycine could be removed primarily by uptake, because during release measurements, the amount of [14C]glycine detected in the medium decreased when glycine uptake activity was optimized. The electrically evoked, Ca2+-dependent release and the high-affinity uptake of glycine may mediate the synaptic release and inactivation of glycine, respectively. These findings, therefore, support the presence of glycinergic synaptic endings in each CN subdivision.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D003056 Cochlear Nerve The cochlear part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The cochlear nerve fibers originate from neurons of the SPIRAL GANGLION and project peripherally to cochlear hair cells and centrally to the cochlear nuclei (COCHLEAR NUCLEUS) of the BRAIN STEM. They mediate the sense of hearing. Acoustic Nerve,Auditory Nerve,Acoustic Nerves,Auditory Nerves,Cochlear Nerves,Nerve, Acoustic,Nerve, Auditory,Nerve, Cochlear,Nerves, Acoustic,Nerves, Auditory,Nerves, Cochlear
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C Staatz-Benson, and S J Potashner
October 1983, Journal of neurochemistry,
C Staatz-Benson, and S J Potashner
October 1988, The Journal of comparative neurology,
C Staatz-Benson, and S J Potashner
June 1996, Journal of neurophysiology,
C Staatz-Benson, and S J Potashner
October 2003, Journal of submicroscopic cytology and pathology,
C Staatz-Benson, and S J Potashner
May 1997, The Journal of comparative neurology,
C Staatz-Benson, and S J Potashner
December 2002, Hearing research,
C Staatz-Benson, and S J Potashner
January 1990, Journal of chemical neuroanatomy,
C Staatz-Benson, and S J Potashner
January 1989, Archives of oto-rhino-laryngology,
C Staatz-Benson, and S J Potashner
August 1986, Brain research,
Copied contents to your clipboard!