Intraepithelial cytotoxic lymphocytes are associated with a poor prognosis in feline intestinal T-cell lymphoma. 2022

Tatshuhito Ii, and James K Chambers, and Ko Nakashima, and Yuko Goto-Koshino, and Takuya Mizuno, and Kazuyuki Uchida
The University of Tokyo, Tokyo, Japan.

The expression of cytotoxic molecules in feline intestinal T-cell lymphoma cells was examined immunohistochemically using endoscopic samples of 50 cases. Cases included 14 large-cell lymphomas (LCLs) and 36 small-cell lymphomas (SCLs). Most LCL and some SCL exhibited marked erosion and villous atrophy. Clonal T-cell receptor (TCR) gene rearrangement was detected in 10/14 (71%) LCL cases and 33/36 (92%) SCL cases. No clonal immunoglobulin heavy chain (IgH) gene rearrangement was detected. Immunohistochemically, all cases were positive for CD3 and negative for CD79α, CD30, CD56, and Foxp3. LCLs were positive for CD8 in 13/14 cases (93%), T-cell intracellular antigen 1 (TIA1) in 14/14 cases (100%), and granzyme B in 6/14 cases (43%). SCLs were positive for CD8 in 28/36 cases (78%), TIA1 in 33/36 cases (92%), and granzyme B in 2/36 cases (6%). TIA1- and granzyme B-positive neoplastic lymphocytes were predominantly observed in the mucosal epithelium of 10/50 cases (20%) and 6/50 cases (12%), respectively. No significant differences in survival time were found based on cell size or epitheliotropism. However, cases with TIA1+ and/or granzyme B+ neoplastic lymphocytes predominantly in the mucosal epithelium had significantly shorter survival times (P < .05), suggesting that mucosal epithelium infiltration of neoplastic cells with a cytotoxic immunophenotype is a negative prognostic factor. Therefore, intraepithelial cytotoxic lymphocytes may be associated with mucosal injury and impaired intestinal function, leading to a poor prognosis in cats with intestinal T-cell lymphoma.

UI MeSH Term Description Entries
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D011379 Prognosis A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations. Prognostic Factor,Prognostic Factors,Factor, Prognostic,Factors, Prognostic,Prognoses
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D002371 Cat Diseases Diseases of the domestic cat (Felis catus or F. domesticus). This term does not include diseases of the so-called big cats such as CHEETAHS; LIONS; tigers, cougars, panthers, leopards, and other Felidae for which the heading CARNIVORA is used. Feline Diseases,Cat Disease,Disease, Cat,Disease, Feline,Diseases, Cat,Diseases, Feline,Feline Disease
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016399 Lymphoma, T-Cell A group of heterogeneous lymphoid tumors representing malignant transformations of T-lymphocytes. T-Cell Lymphoma,Lymphoma, T Cell,Lymphomas, T-Cell,T Cell Lymphoma,T-Cell Lymphomas
D051858 Forkhead Transcription Factors A subclass of winged helix DNA-binding proteins that share homology with their founding member fork head protein, Drosophila. Forkhead Box Protein,Forkhead Box Transcription Factor,Forkhead Protein,Forkhead Transcription Factor,Forkhead Box Proteins,Forkhead Box Transcription Factors,Forkhead Proteins,Fox Transcription Factors,Box Protein, Forkhead,Box Proteins, Forkhead,Factor, Forkhead Transcription,Protein, Forkhead,Protein, Forkhead Box,Proteins, Forkhead Box,Transcription Factor, Forkhead,Transcription Factors, Forkhead,Transcription Factors, Fox
D053804 Granzymes A family of serine endopeptidases found in the SECRETORY GRANULES of LEUKOCYTES such as CYTOTOXIC T-LYMPHOCYTES and NATURAL KILLER CELLS. When secreted into the intercellular space granzymes act to eliminate transformed and virus-infected host cells. Cytotoxic Serine Protease B,Cytotoxic T-Lymphocyte Associated 1 Protein,Cytotoxic T-Lymphocyte Proteinase 1,Fragmentin 2,Granzyme,Granzyme A,Granzyme B,Granzyme C,Granzyme K,Granzyme M,Granzyme-3,Granzyme-Like Protein III,Hanukah Factor,NK-Tryptase-2,Natural Killer Cell Granule Tryptase-2,Cytotoxic T Lymphocyte Associated 1 Protein,Cytotoxic T Lymphocyte Proteinase 1,Granzyme 3,Granzyme Like Protein III,NK Tryptase 2,Natural Killer Cell Granule Tryptase 2

Related Publications

Tatshuhito Ii, and James K Chambers, and Ko Nakashima, and Yuko Goto-Koshino, and Takuya Mizuno, and Kazuyuki Uchida
August 2018, Blood advances,
Tatshuhito Ii, and James K Chambers, and Ko Nakashima, and Yuko Goto-Koshino, and Takuya Mizuno, and Kazuyuki Uchida
August 1998, Immunologic research,
Tatshuhito Ii, and James K Chambers, and Ko Nakashima, and Yuko Goto-Koshino, and Takuya Mizuno, and Kazuyuki Uchida
March 1994, The Clinical investigator,
Tatshuhito Ii, and James K Chambers, and Ko Nakashima, and Yuko Goto-Koshino, and Takuya Mizuno, and Kazuyuki Uchida
September 1989, Human pathology,
Tatshuhito Ii, and James K Chambers, and Ko Nakashima, and Yuko Goto-Koshino, and Takuya Mizuno, and Kazuyuki Uchida
April 2024, Pathology,
Tatshuhito Ii, and James K Chambers, and Ko Nakashima, and Yuko Goto-Koshino, and Takuya Mizuno, and Kazuyuki Uchida
February 1987, Journal of clinical oncology : official journal of the American Society of Clinical Oncology,
Tatshuhito Ii, and James K Chambers, and Ko Nakashima, and Yuko Goto-Koshino, and Takuya Mizuno, and Kazuyuki Uchida
May 1996, The American journal of pathology,
Tatshuhito Ii, and James K Chambers, and Ko Nakashima, and Yuko Goto-Koshino, and Takuya Mizuno, and Kazuyuki Uchida
February 2017, British journal of haematology,
Tatshuhito Ii, and James K Chambers, and Ko Nakashima, and Yuko Goto-Koshino, and Takuya Mizuno, and Kazuyuki Uchida
December 2005, Proceedings of the National Academy of Sciences of the United States of America,
Tatshuhito Ii, and James K Chambers, and Ko Nakashima, and Yuko Goto-Koshino, and Takuya Mizuno, and Kazuyuki Uchida
January 2000, Digestion,
Copied contents to your clipboard!