Effects of particle size and toasting of fava beans and forage source on nutrient digestibility, ruminal fermentation, and metabolizable protein supply in dairy cows. 2022

W J Wang, and M Larsen, and M R Weisbjerg, and M Johansen, and A L F Hellwing, and P Lund
Department of Animal Science, AU Foulum, Aarhus University, DK 8830 Tjele, Denmark. Electronic address: Wangwj@anis.au.dk.

The objective of this study was to investigate the effects of heat treatment (toasting) and particle size alterations (grinding; rolling) on nutrient utilization, ruminal fermentation, and supply of metabolizable protein (MP), and to study the interaction between processing conditions of fava beans and forage type. Six Danish Holstein dairy cows fitted with ruminal, duodenal, and ileal cannulas were used in a 6 × 4 incomplete Latin square design with 4 periods of 21-d duration. Cows were fed ad libitum with 6 experimental diets: diets high in either grass-clover silage or corn silage were combined with ground untoasted, ground toasted, or rolled untoasted fava beans. Samples of ruminal fluid, digesta from duodenum and ileum, and feces were collected, and nutrient digestibility was estimated using Cr2O3 and TiO2 as flow markers. Diets high in corn silage resulted in higher ruminal pH and higher proportion of propionate in ruminal volatile fatty acids compared with diets high in grass-clover silage. Diets high in corn silage resulted in higher apparent total-tract digestibility of crude protein and starch but lower apparent ruminal and total-tract digestibility of neutral detergent fiber compared with diets high in grass-clover silage. Rolling of fava beans decreased the in situ small intestinal disappearance of rumen-undegradable protein corrected for particle losses. Compared with grinding, rolling of fava beans reduced apparent ruminal digestibility of starch, true ruminal digestibility of organic matter, crude protein, and AA, and small intestinal digestibility of AA and starch. Grinding of fava beans increased apparent ruminal digestibility of neutral detergent fiber and reduced the proportion of propionate in ruminal volatile fatty acids compared with rolling of fava beans. In addition, rolling of fava beans had no effect on MP supply. Toasting of fava beans had no effect on in vivo nutrient digestibility except for an interaction with forage source on apparent ruminal dry matter and organic matter digestibility. Toasting of fava beans did not affect small intestinal digestion of individual and total AA, and therefore failed to increase MP supply. In conclusion, neither replacing grass-clover silage with corn silage, nor toasting nor rolling of fava beans had an effect on supply of MP.

UI MeSH Term Description Entries
D007774 Lactation The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN. Lactation, Prolonged,Milk Secretion,Lactations, Prolonged,Milk Secretions,Prolonged Lactation,Prolonged Lactations
D008892 Milk The off-white liquid secreted by the mammary glands of humans and other mammals. It contains proteins, sugar, lipids, vitamins, and minerals. Cow Milk,Cow's Milk,Milk, Cow,Milk, Cow's
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D011422 Propionates Derivatives of propionic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxyethane structure. Propanoate,Propanoic Acid,Propionate,Propanoates,Propanoic Acid Derivatives,Propanoic Acids,Propionic Acid Derivatives,Propionic Acids,Acid, Propanoic,Acids, Propanoic,Acids, Propionic,Derivatives, Propanoic Acid,Derivatives, Propionic Acid
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003313 Zea mays A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER. Corn,Indian Corn,Maize,Teosinte,Zea,Corn, Indian
D003902 Detergents Purifying or cleansing agents, usually salts of long-chain aliphatic bases or acids, that exert cleansing (oil-dissolving) and antimicrobial effects through a surface action that depends on possessing both hydrophilic and hydrophobic properties. Cleansing Agents,Detergent Pods,Laundry Detergent Pods,Laundry Pods,Syndet,Synthetic Detergent,Agent, Cleansing,Agents, Cleansing,Cleansing Agent,Detergent,Detergent Pod,Detergent Pod, Laundry,Detergent Pods, Laundry,Detergent, Synthetic,Detergents, Synthetic,Laundry Detergent Pod,Laundry Pod,Pod, Detergent,Pod, Laundry,Pod, Laundry Detergent,Pods, Detergent,Pods, Laundry,Pods, Laundry Detergent,Synthetic Detergents
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D004043 Dietary Fiber The remnants of plant cell walls that are resistant to digestion by the alimentary enzymes of man. It comprises various polysaccharides and lignins. Fiber, Dietary,Roughage,Wheat Bran,Bran, Wheat,Brans, Wheat,Dietary Fibers,Fibers, Dietary,Roughages,Wheat Brans
D004063 Digestion The process of breakdown of food for metabolism and use by the body.

Related Publications

W J Wang, and M Larsen, and M R Weisbjerg, and M Johansen, and A L F Hellwing, and P Lund
December 2018, Journal of animal physiology and animal nutrition,
W J Wang, and M Larsen, and M R Weisbjerg, and M Johansen, and A L F Hellwing, and P Lund
November 2009, Journal of dairy science,
W J Wang, and M Larsen, and M R Weisbjerg, and M Johansen, and A L F Hellwing, and P Lund
April 2003, Journal of dairy science,
W J Wang, and M Larsen, and M R Weisbjerg, and M Johansen, and A L F Hellwing, and P Lund
January 2023, Journal of animal science,
W J Wang, and M Larsen, and M R Weisbjerg, and M Johansen, and A L F Hellwing, and P Lund
May 2023, Journal of dairy science,
W J Wang, and M Larsen, and M R Weisbjerg, and M Johansen, and A L F Hellwing, and P Lund
August 2021, Scientific reports,
W J Wang, and M Larsen, and M R Weisbjerg, and M Johansen, and A L F Hellwing, and P Lund
January 1997, Journal of dairy science,
W J Wang, and M Larsen, and M R Weisbjerg, and M Johansen, and A L F Hellwing, and P Lund
May 2013, Journal of dairy science,
W J Wang, and M Larsen, and M R Weisbjerg, and M Johansen, and A L F Hellwing, and P Lund
January 2008, Journal of dairy science,
Copied contents to your clipboard!