The disposition and metabolism of acrylic acid and ethyl acrylate in male Sprague-Dawley rats. 1987

J D deBethizy, and J R Udinsky, and H E Scribner, and C B Frederick

Following oral dosing of [2,3-14C]acrylic acid (AA; 4, 40, or 400 mg/kg) and [2,3-14C]ethyl acrylate (EA; 2, 20, or 200 mg/kg), the dosed radioactivity was rapidly excreted, with 50-75% of the dose for both compounds eliminated within 24 hr. The primary excretory metabolite for both compounds is carbon dioxide, accounting for 44-68% of the dose. HPLC analysis of the urine of AA- and EA-dosed animals indicated the presence of 3-hydroxypropionic acid. The detection of this metabolite suggests the incorporation of AA into propionic acid metabolism and may explain the rapid evolution of carbon dioxide from AA and EA. HPLC analysis of urine from EA-dosed rats revealed the presence of two metabolites derived from glutathione conjugation, N-acetyl-S-(carboxyethyl)cysteine and N-acetyl-S-(carboxyethyl)cysteine ethyl ester. The excretion of the N-acetyl cysteine derivatives of EA, expressed as a percentage of the dosed compound, decreased in a dose-dependent manner that may be attributed to the depletion of glutathione in organs primarily responsible for glutathione conjugation. No significant decrease in hepatic nonprotein sulfhydryl (NPSH) content was observed following oral dosing with EA at 2-200 mg/kg. However, the depletion of NPSH content at the dosing site, forestomach, and glandular stomach, decreased significantly between 0.02 and 0.2% EA in the dose solution (2 and 20 mg/kg). This observation would suggest that the dosing site represents a significant site of conjugation for relatively low doses of EA. Treatment with the carboxylesterase inhibitor, tri-o-cresyl phosphate (TOCP), 18 hr prior to acrylate dosing potentiated the depletion of hepatic nonprotein sulfhydryls, emphasizing the dominance of hydrolysis as a systemic detoxifying mode in this species. In contrast to EA, AA did not significantly decrease NPSH content in the liver, blood, or forestomach at oral doses of less than 8% AA in the dose solution (400 mg/kg), although a significant depletion of NPSH was observed in the glandular stomach at doses greater than 0.08% (4 mg/kg). No conjugation involving the double bond of AA could be detected in in vitro reactions with glutathione or in the in vivo metabolites, suggesting a secondary effect of AA on NPSH content in these organs. The weights of the forestomach and glandular stomach increased with AA dose, reflecting gross edema and inflammation. With EA this effect on organ weight was only demonstrated in the forestomach, and the response was increased when hydrolysis of EA was inhibited with TOCP.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000179 Acrylates Derivatives of acrylic acid (the structural formula CH2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
D013270 Stomach An organ of digestion situated in the left upper quadrant of the abdomen between the termination of the ESOPHAGUS and the beginning of the DUODENUM. Stomachs

Related Publications

J D deBethizy, and J R Udinsky, and H E Scribner, and C B Frederick
December 1999, Drug metabolism and disposition: the biological fate of chemicals,
J D deBethizy, and J R Udinsky, and H E Scribner, and C B Frederick
September 1993, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
J D deBethizy, and J R Udinsky, and H E Scribner, and C B Frederick
February 1979, IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans,
J D deBethizy, and J R Udinsky, and H E Scribner, and C B Frederick
September 1995, Annals of the New York Academy of Sciences,
J D deBethizy, and J R Udinsky, and H E Scribner, and C B Frederick
January 1999, Drug metabolism and disposition: the biological fate of chemicals,
J D deBethizy, and J R Udinsky, and H E Scribner, and C B Frederick
January 1994, Chemical research in toxicology,
J D deBethizy, and J R Udinsky, and H E Scribner, and C B Frederick
March 2004, Chemosphere,
J D deBethizy, and J R Udinsky, and H E Scribner, and C B Frederick
January 1988, Drug metabolism and disposition: the biological fate of chemicals,
J D deBethizy, and J R Udinsky, and H E Scribner, and C B Frederick
January 1993, Polish journal of occupational medicine and environmental health,
J D deBethizy, and J R Udinsky, and H E Scribner, and C B Frederick
January 1984, Journal of toxicology and environmental health,
Copied contents to your clipboard!