Carbon 13 NMR studies of saturated fatty acids bound to bovine serum albumin. I. The filling of individual fatty acid binding sites. 1987

D P Cistola, and D M Small, and J A Hamilton

13C NMR chemical shift and intensity results for a series of carboxyl 13C-enriched saturated fatty acids (8-18 carbons) bound to bovine serum albumin (BSA) are presented as a function of increasing fatty acid (FA)/BSA mole ratio. Spectra for long-chain (greater than or equal to 12 carbons) FA X BSA complexes exhibited up to five FA carboxyl resonances, designated a, b, b', c, and d. Only three resonances (peaks b, b', and d) were observed below 3:1 FA X BSA mole ratio, and at greater than or equal to 3:1 mole ratio, two additional resonances were observed (peaks c and a). In a spectrum of 5:1 stearic acid X BSA complexes, peaks b, b', and d each represented approximately one-fifth, and peak c approximately two-fifths, of the total FA carboxyl intensity. Plots of total carboxyl/carbonyl intensity ratio as a function of FA X BSA mole ratio were linear up to 7-9 mole ratio. Deviation from linearity at mole ratios greater than or equal to 7 was accompanied by the detection of crystalline unbound FA (as 1:1 acid/soap) by X-ray diffraction. In contrast to long-chain FA X BSA complexes, 13C NMR spectra of octanoic acid X BSA complexes yielded only one FA carboxyl resonance (peak c) at FA X BSA mole ratios between 1 and 20. We conclude: peaks b, b', and d represent FA bound to three individual high affinity (primary) long-chain FA binding sites on BSA; peak c represents FA bound to several secondary long-chain (or primary short-chain) FA binding sites on BSA; peak a represents long-chain FA bound to an additional lower affinity binding site. We present a model that correlates the observed 13C NMR resonances with individual binding site locations predicted by a recent three-dimensional model of BSA.

UI MeSH Term Description Entries
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012710 Serum Albumin, Bovine Serum albumin from cows, commonly used in in vitro biological studies. (From Stedman, 25th ed) Fetal Bovine Serum,Fetal Calf Serum,Albumin Bovine,Bovine Albumin,Bovine Serum Albumin,Albumin, Bovine,Albumin, Bovine Serum,Bovine Serum, Fetal,Bovine, Albumin,Calf Serum, Fetal,Serum, Fetal Bovine,Serum, Fetal Calf
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions

Related Publications

D P Cistola, and D M Small, and J A Hamilton
January 1969, Journal of lipid research,
D P Cistola, and D M Small, and J A Hamilton
March 1994, Journal of lipid research,
D P Cistola, and D M Small, and J A Hamilton
August 1994, Biochemistry and molecular biology international,
D P Cistola, and D M Small, and J A Hamilton
January 1980, Acta pharmaceutica Suecica,
D P Cistola, and D M Small, and J A Hamilton
August 1999, Biochimica et biophysica acta,
D P Cistola, and D M Small, and J A Hamilton
July 1980, The Journal of biological chemistry,
D P Cistola, and D M Small, and J A Hamilton
March 1991, Proceedings of the National Academy of Sciences of the United States of America,
D P Cistola, and D M Small, and J A Hamilton
February 1974, Chemical & pharmaceutical bulletin,
D P Cistola, and D M Small, and J A Hamilton
May 2012, International journal of biological macromolecules,
D P Cistola, and D M Small, and J A Hamilton
December 1990, Biochimica et biophysica acta,
Copied contents to your clipboard!