Molecularly imprinted polypyrrole based electrochemical sensor for selective determination of ethanethiol. 2023

M Asunción Alonso-Lomillo, and Olga Domínguez-Renedo
Analytical Chemistry Department, Faculty of Sciences, University of Burgos, Pza. Misael Bañuelos S/n, 09001, Burgos, Spain.

This work describes a molecularly imprinted (MIP) sensor, based on the electropolymerization of pyrrole on a glassy carbon electrode (GCE), for the determination of ethanethiol. Ethanethiol was used as a template molecule for the formation of cavities in the imprinted polymer. The effect of molar ratios template molecules/functional monomers and time needed to remove the template were optimized. The developed MIP/GCE sensor presented a linear range from 6.1 to 32.4 mg L-1 with capability detection and reproducibility values of 7.2 mg L-1 and 10.4%, respectively. The sensitivity of the developed sensor was enhanced by the incorporation of gold nanoparticles (AuNPs). The AuNPs/MIP/GCE showed a capability of detection and reproducibility values of 0.4 mg L-1 and 4.1%, respectively (calibration range from 0.3 to 3.1 mg L-1). The sensor was successfully applied to the determination of ethanethiol in spiked wine samples with recoveries ranging from 99% to 107%.

UI MeSH Term Description Entries
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D011758 Pyrroles Azoles of one NITROGEN and two double bonds that have aromatic chemical properties. Pyrrole
D006046 Gold A yellow metallic element with the atomic symbol Au, atomic number 79, and atomic weight 197. It is used in jewelry, goldplating of other metals, as currency, and in dental restoration. Many of its clinical applications, such as ANTIRHEUMATIC AGENTS, are in the form of its salts.
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D053768 Metal Nanoparticles Nanoparticles produced from metals whose uses include biosensors, optics, and catalysts. In biomedical applications the particles frequently involve the noble metals, especially gold and silver. Metal Nanocrystals,Metallic Nanocrystals,Metallic Nanoparticles,Metal Nanocrystal,Metal Nanoparticle,Metallic Nanocrystal,Metallic Nanoparticle,Nanocrystal, Metal,Nanocrystal, Metallic,Nanocrystals, Metal,Nanocrystals, Metallic,Nanoparticle, Metal,Nanoparticle, Metallic,Nanoparticles, Metal,Nanoparticles, Metallic

Related Publications

M Asunción Alonso-Lomillo, and Olga Domínguez-Renedo
November 2021, Biosensors & bioelectronics,
M Asunción Alonso-Lomillo, and Olga Domínguez-Renedo
January 2023, Sensors (Basel, Switzerland),
M Asunción Alonso-Lomillo, and Olga Domínguez-Renedo
January 2015, Biosensors & bioelectronics,
M Asunción Alonso-Lomillo, and Olga Domínguez-Renedo
August 2016, Polymers,
M Asunción Alonso-Lomillo, and Olga Domínguez-Renedo
October 2015, Materials science & engineering. C, Materials for biological applications,
Copied contents to your clipboard!