Thromboxane A2 causes feedback amplification involving extensive thromboxane A2 formation on close contact of human platelets in media with a low concentration of ionized calcium. 1987

M A Packham, and R L Kinlough-Rathbone, and J F Mustard

Close platelet-to-platelet contact induced by weak agonists in a medium with a low concentration of Ca2+ leads to thromboxane A2 (TXA2) formation, release of granule contents, and secondary aggregation. These responses do not occur in a medium containing Ca2+ in the physiological range (1 to 2 mmol/L). Experiments were done to determine whether feedback amplification is required to generate amounts of TXA2 that are sufficient to cause secondary aggregation and the reactions associated with it, or whether close platelet-to-platelet contact alone is sufficient to generate enough TXA2 to produce these responses. Platelets were washed and resuspended in a modified Tyrode solution to which no calcium salt was added that contained 0.35% albumin and apyrase. This medium contains 20 mumol/L Ca2+ and 1 mmol/L Mg2+. Platelets were aggregated with adenosine diphosphate (ADP) in the presence of fibrinogen, agglutinated with polylysine, or after pretreatment with chymotrypsin, aggregated with fibrinogen. In the low-Ca2+ medium, all these agonists caused platelets to adhere to each other, followed by secondary aggregation with TXA2 formation and release of granule contents. When Ca2+ (1 to 2 mmol/L), aspirin, or the thromboxane receptor blocker BM 13.177 was present, the secondary responses did not occur; dazoxiben decreased thromboxane formation, but did not prevent secondary aggregation or release. Aspirin-treated platelets were less responsive to ADP, U46619, or TXA2 in the low-Ca2+ medium, which indicated that the secondary responses of untreated platelets were not caused by a generalized increase in sensitivity. The reactions that result from close platelet-to-platelet contact in a low-Ca2+ medium can be caused by a wide variety of weak agonists; the secondary aggregation response and release of granule contents are dependent on TXA2 formation and on feedback amplification by TXA2 or the prostaglandin endoperoxides. The secondary responses caused by weak agonists in citrated platelet-rich plasma (which has a concentration of Ca2+ similar to the low-Ca2+ medium used in the present studies) do not occur at the concentration of Ca2+ in circulating blood and thus may have little biologic relevance.

UI MeSH Term Description Entries
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011450 Prostaglandin Endoperoxides, Synthetic Synthetic compounds that are analogs of the naturally occurring prostaglandin endoperoxides and that mimic their pharmacologic and physiologic activities. They are usually more stable than the naturally occurring compounds. Prostaglandin Endoperoxide Analogs,Prostaglandin Endoperoxide Analogues,Synthetic Prostaglandin Endoperoxides,Analogues, Prostaglandin Endoperoxide,Endoperoxide Analogues, Prostaglandin,Endoperoxides, Synthetic Prostaglandin
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013928 Thromboxane A2 An unstable intermediate between the prostaglandin endoperoxides and thromboxane B2. The compound has a bicyclic oxaneoxetane structure. It is a potent inducer of platelet aggregation and causes vasoconstriction. It is the principal component of rabbit aorta contracting substance (RCS). Rabbit Aorta Contracting Substance,A2, Thromboxane

Related Publications

M A Packham, and R L Kinlough-Rathbone, and J F Mustard
October 1991, The Journal of biological chemistry,
M A Packham, and R L Kinlough-Rathbone, and J F Mustard
December 1983, Biochemical and biophysical research communications,
M A Packham, and R L Kinlough-Rathbone, and J F Mustard
November 1976, Acta physiologica Scandinavica,
M A Packham, and R L Kinlough-Rathbone, and J F Mustard
April 1986, Journal of biochemistry,
M A Packham, and R L Kinlough-Rathbone, and J F Mustard
July 1985, The American journal of physiology,
M A Packham, and R L Kinlough-Rathbone, and J F Mustard
September 1987, Prostaglandins, leukotrienes, and medicine,
M A Packham, and R L Kinlough-Rathbone, and J F Mustard
May 1992, Thrombosis research,
M A Packham, and R L Kinlough-Rathbone, and J F Mustard
January 1980, Advances in prostaglandin and thromboxane research,
Copied contents to your clipboard!