The central efferent mechanism of brown adipose tissue thermogenesis induced by preoptic cooling. 1987

K Imai-Matsumura, and T Nakayama

This study was performed to investigate central efferent mechanisms for brown adipose tissue thermogenesis. In unanesthetized rats, the effects of local anesthesia of the ventromedial hypothalamus, anterior hypothalamus, and lateral hypothalamus were observed on the brown adipose tissue thermogenesis induced by preoptic cooling. Rats had a thermode, thermocouple, and bilateral injection cannulae chronically implanted in the hypothalamus and a thermocouple beneath the interscapular brown adipose tissue. The experiments were done at an ambient temperature of 24-25 degrees C. Preoptic cooling increased brown adipose tissue and colonic temperatures without shivering. Injecting lidocaine bilaterally into the ventromedial hypothalamus during preoptic cooling reduced brown adipose tissue temperature (Tbat). The mean maximum decrease of Tbat was 0.51 +/- 0.26 degrees C and occurred 5-8 min after lidocaine injection. When lidocaine was injected into the anterior hypothalamus, Tbat increased. The mean maximum increase of Tbat was 0.85 +/- 0.29 degrees C and occurred 4-9 min after lidocaine injection. In the lateral hypothalamus, lidocaine had no effect on Tbat. Tbat was not influenced by injection of saline into the ventromedial, anterior, or lateral hypothalamus. The efferent pathway from preoptic to brown adipose tissue may thus traverse the medial part of hypothalamus. The ventromedial hypothalamus facilitates and anterior hypothalamus inhibits brown adipose tissue thermogenesis induced by preoptic cooling.

UI MeSH Term Description Entries
D007025 Anterior Hypothalamic Nucleus Loose heterogeneous collection of cells in the anterior hypothalamus, continuous rostrally with the medial and lateral PREOPTIC AREAS and caudally with the TUBER CINEREUM. Anterior Hypothalamic Area,Hypothalamic Area, Anterior,Nucleus Anterior Hypothalami,Anterior Hypothalami, Nucleus,Anterior Hypothalamic Areas,Anterior Hypothalamus, Nucleus,Area, Anterior Hypothalamic,Areas, Anterior Hypothalamic,Hypothalami, Nucleus Anterior,Hypothalamic Areas, Anterior,Hypothalamic Nucleus, Anterior,Hypothalamus, Nucleus Anterior,Nucleus Anterior Hypothalamus,Nucleus, Anterior Hypothalamic
D007026 Hypothalamic Area, Lateral Area in the hypothalamus bounded medially by the mammillothalamic tract and the anterior column of the FORNIX (BRAIN). The medial edge of the INTERNAL CAPSULE and the subthalamic region form its lateral boundary. It contains the lateral hypothalamic nucleus, tuberomammillary nucleus, lateral tuberal nuclei, and fibers of the MEDIAL FOREBRAIN BUNDLE. Lateral Hypothalamic Area,Lateral Hypothalamic Nucleus,Tuberomammillary Nucleus,Accessory Nucleus of the Ventral Horn,Area Hypothalamica Lateralis,Area Lateralis Hypothalami,Lateral Hypothalamus,Lateral Tuberal Nuclei,Lateral Tuberal Nucleus,Area Hypothalamica Laterali,Area Lateralis Hypothalamus,Area, Lateral Hypothalamic,Areas, Lateral Hypothalamic,Hypothalami, Area Lateralis,Hypothalamic Areas, Lateral,Hypothalamic Nucleus, Lateral,Hypothalamica Laterali, Area,Hypothalamica Lateralis, Area,Hypothalamus, Area Lateralis,Hypothalamus, Lateral,Lateral Hypothalamic Areas,Laterali, Area Hypothalamica,Lateralis Hypothalami, Area,Lateralis Hypothalamus, Area,Lateralis, Area Hypothalamica,Nuclei, Lateral Tuberal,Nucleus, Lateral Hypothalamic,Nucleus, Lateral Tuberal,Nucleus, Tuberomammillary,Tuberal Nuclei, Lateral,Tuberal Nucleus, Lateral
D008012 Lidocaine A local anesthetic and cardiac depressant used as an antiarrhythmia agent. Its actions are more intense and its effects more prolonged than those of PROCAINE but its duration of action is shorter than that of BUPIVACAINE or PRILOCAINE. Lignocaine,2-(Diethylamino)-N-(2,6-Dimethylphenyl)Acetamide,2-2EtN-2MePhAcN,Dalcaine,Lidocaine Carbonate,Lidocaine Carbonate (2:1),Lidocaine Hydrocarbonate,Lidocaine Hydrochloride,Lidocaine Monoacetate,Lidocaine Monohydrochloride,Lidocaine Monohydrochloride, Monohydrate,Lidocaine Sulfate (1:1),Octocaine,Xylesthesin,Xylocaine,Xylocitin,Xyloneural
D008297 Male Males
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001833 Body Temperature Regulation The processes of heating and cooling that an organism uses to control its temperature. Heat Loss,Thermoregulation,Regulation, Body Temperature,Temperature Regulation, Body,Body Temperature Regulations,Heat Losses,Loss, Heat,Losses, Heat,Regulations, Body Temperature,Temperature Regulations, Body,Thermoregulations
D002001 Adipose Tissue, Brown A thermogenic form of adipose tissue composed of BROWN ADIPOCYTES. It is found in newborns of many species including humans, and in hibernating mammals. Brown fat is richly vascularized, innervated, and densely packed with MITOCHONDRIA which can generate heat directly from the stored lipids. Brown Fat,Hibernating Gland,Brown Adipose Tissue,Fat, Brown,Tissue, Brown Adipose
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent

Related Publications

K Imai-Matsumura, and T Nakayama
January 2007, American journal of physiology. Regulatory, integrative and comparative physiology,
K Imai-Matsumura, and T Nakayama
October 2018, American journal of physiology. Regulatory, integrative and comparative physiology,
K Imai-Matsumura, and T Nakayama
November 2022, Obesity (Silver Spring, Md.),
K Imai-Matsumura, and T Nakayama
January 2012, Frontiers in endocrinology,
K Imai-Matsumura, and T Nakayama
April 2004, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society,
K Imai-Matsumura, and T Nakayama
February 1981, Nature,
K Imai-Matsumura, and T Nakayama
January 2018, Handbook of clinical neurology,
K Imai-Matsumura, and T Nakayama
January 2003, Experimental physiology,
K Imai-Matsumura, and T Nakayama
April 1985, The New England journal of medicine,
Copied contents to your clipboard!