T7 gene 6 exonuclease has an RNase H activity. 1978

K Shinozaki, and T Okazaki

T7 gene 6 exonuclease has been shown to have an RNase H activity as well as a double-strand specific DNase activity by the following experiments: The RNase H activity coelutes with the DNase activity from DEAE-cellulose, phosphocellulose, hydroxyapatite, and Sephadex G-200 columns. Gene 6 exonuclease specified by a T7 strain with a temperature sensitive mutation in gene 6 has an extremely heat-labile RNase H activity as well as a heat-labile DNase activity. T7 gene 6 exonuclease degrades the RNA region of a poly(A) . poly(dT) hybrid polymer exonucleolytically from the 5' terminus, releasing a ribonucleoside 5'-monophosphate product. When the RNA strand of a 0X174 RNA . DNA hybrid molecule synthesized with E. coli RNA polymerase is degraded, a ribonucleoside triphosphate is produced from the 5'-triphosphate terminus. Participation of T7 gene 6 exonuclease in the removal of primer RNA in discontinuous replication of T7 DNA is discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D003851 Deoxyribonucleases Enzymes which catalyze the hydrolases of ester bonds within DNA. EC 3.1.-. DNAase,DNase,Deoxyribonuclease,Desoxyribonuclease,Desoxyribonucleases,Nucleases, DNA,Acid DNase,Alkaline DNase,DNA Nucleases,DNase, Acid,DNase, Alkaline
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005092 Exonucleases Enzymes that catalyze the release of mononucleotides by the hydrolysis of the terminal bond of deoxyribonucleotide or ribonucleotide chains. Exonuclease,3'-5'-Exonuclease,3'-5'-Exonucleases,5'-3'-Exonuclease,5'-3'-Exonucleases,3' 5' Exonuclease,3' 5' Exonucleases,5' 3' Exonuclease,5' 3' Exonucleases
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

K Shinozaki, and T Okazaki
February 2014, The Journal of biological chemistry,
K Shinozaki, and T Okazaki
November 1974, Journal of virology,
K Shinozaki, and T Okazaki
January 1972, The Journal of biological chemistry,
K Shinozaki, and T Okazaki
January 1972, The Journal of biological chemistry,
K Shinozaki, and T Okazaki
September 1990, Journal of molecular biology,
K Shinozaki, and T Okazaki
February 1976, Journal of molecular biology,
K Shinozaki, and T Okazaki
April 1985, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire,
Copied contents to your clipboard!