Adsorption of O2 molecule on the transition metals (TM(II) = Sc2+, Ti2+, V2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) porphyrins induced carbon nanocone (TM(II)PCNC). 2023
In this work, the adsorption of the O2 molecule on the transition metals (TM(II) = Sc2+, Ti2+, V2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) porphyrins induced carbon nanocone (TM(II)-PCNC) were investigated using density functional theory (DFT) in terms of stabilities, energetic, structural, and electronic properties. It has been found that the O2 molecule is adsorbed on the TM(II)-PCNC with adsorption energies in the range of 0.29 to -98.32 kcal/mol. The interaction between the O2 gas and the Sc-PCNC molecule from the outer site is the strongest. The interaction of the O2 gas over the Ni-PCNC molecule from both outer and inner sites is the weakest. It can be concluded that the suitable interaction energy (Eg) for sensing ability attributed to the Zn-PCNC because an effective and physical interaction between Zn-PCNC and the O2 gas leads to short recovery time. DFT calculations also clarified that the high %ΔEg of Zn-PCNC and hence the high sensitivity to the O2 gas confirm that the Zn-PCNC molecule is a promising candidate for having a good sensing ability to the O2 gas.