The impact of violating the independence assumption in meta-analysis on biomarker discovery. 2022

Farnoosh Abbas-Aghababazadeh, and Wei Xu, and Benjamin Haibe-Kains
Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.

With rapid advancements in high-throughput sequencing technologies, massive amounts of "-omics" data are now available in almost every biomedical field. Due to variance in biological models and analytic methods, findings from clinical and biological studies are often not generalizable when tested in independent cohorts. Meta-analysis, a set of statistical tools to integrate independent studies addressing similar research questions, has been proposed to improve the accuracy and robustness of new biological insights. However, it is common practice among biomarker discovery studies using preclinical pharmacogenomic data to borrow molecular profiles of cancer cell lines from one study to another, creating dependence across studies. The impact of violating the independence assumption in meta-analyses is largely unknown. In this study, we review and compare different meta-analyses to estimate variations across studies along with biomarker discoveries using preclinical pharmacogenomics data. We further evaluate the performance of conventional meta-analysis where the dependence of the effects was ignored via simulation studies. Results show that, as the number of non-independent effects increased, relative mean squared error and lower coverage probability increased. Additionally, we also assess potential bias in the estimation of effects for established meta-analysis approaches when data are duplicated and the assumption of independence is violated. Using pharmacogenomics biomarker discovery, we find that treating dependent studies as independent can substantially increase the bias of meta-analyses. Importantly, we show that violating the independence assumption decreases the generalizability of the biomarker discovery process and increases false positive results, a key challenge in precision oncology.

UI MeSH Term Description Entries

Related Publications

Farnoosh Abbas-Aghababazadeh, and Wei Xu, and Benjamin Haibe-Kains
July 1998, Memory & cognition,
Farnoosh Abbas-Aghababazadeh, and Wei Xu, and Benjamin Haibe-Kains
October 2016, Psychonomic bulletin & review,
Farnoosh Abbas-Aghababazadeh, and Wei Xu, and Benjamin Haibe-Kains
March 2021, Epidemiology (Cambridge, Mass.),
Farnoosh Abbas-Aghababazadeh, and Wei Xu, and Benjamin Haibe-Kains
May 1995, Journal of experimental psychology. Learning, memory, and cognition,
Farnoosh Abbas-Aghababazadeh, and Wei Xu, and Benjamin Haibe-Kains
September 2025, Emerging topics in life sciences,
Farnoosh Abbas-Aghababazadeh, and Wei Xu, and Benjamin Haibe-Kains
December 2021, Behavior research methods,
Farnoosh Abbas-Aghababazadeh, and Wei Xu, and Benjamin Haibe-Kains
November 2022, The international journal of biostatistics,
Farnoosh Abbas-Aghababazadeh, and Wei Xu, and Benjamin Haibe-Kains
January 2020, Frontiers in psychology,
Farnoosh Abbas-Aghababazadeh, and Wei Xu, and Benjamin Haibe-Kains
September 1998, Memory & cognition,
Farnoosh Abbas-Aghababazadeh, and Wei Xu, and Benjamin Haibe-Kains
January 2012, Structural equation modeling : a multidisciplinary journal,
Copied contents to your clipboard!