| D009831 |
Olfactory Mucosa |
That portion of the nasal mucosa containing the sensory nerve endings for SMELL, located at the dome of each NASAL CAVITY. The yellow-brownish olfactory epithelium consists of OLFACTORY RECEPTOR NEURONS; brush cells; STEM CELLS; and the associated olfactory glands. |
Olfactory Epithelium,Olfactory Membrane,Epithelium, Olfactory,Membrane, Olfactory,Membranes, Olfactory,Mucosa, Olfactory,Olfactory Membranes |
|
| D002118 |
Calcium |
A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. |
Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation |
|
| D000075368 |
Anoctamins |
A family of transmembrane proteins that function primarily as calcium-activated chloride channels. Structurally, they form a homodimer where each subunit consists of eight transmembrane helices with the N and C terminals exposed to the cytosol. The regions between helices 5 and 7 may be important for ion pore formation and calcium ion binding. |
Anoctamin,TMEM16 Protein Family,TMEM16 Proteins,Protein Family, TMEM16 |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D051379 |
Mice |
The common name for the genus Mus. |
Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus |
|
| D018034 |
Olfactory Receptor Neurons |
Neurons in the OLFACTORY EPITHELIUM with proteins (RECEPTORS, ODORANT) that bind, and thus detect, odorants. These neurons send their DENDRITES to the surface of the epithelium with the odorant receptors residing in the apical non-motile cilia. Their unmyelinated AXONS synapse in the OLFACTORY BULB of the BRAIN. |
Neurons, Olfactory Receptor,Olfactory Receptor Cells,Olfactory Receptor Neuron,Olfactory Sensory Cells,Olfactory Sensory Cilia,Olfactory Sensory Neurons,Cell, Olfactory Receptor,Cell, Olfactory Sensory,Cells, Olfactory Receptor,Cells, Olfactory Sensory,Cilia, Olfactory Sensory,Cilias, Olfactory Sensory,Neuron, Olfactory Receptor,Neuron, Olfactory Sensory,Neurons, Olfactory Sensory,Olfactory Receptor Cell,Olfactory Sensory Cell,Olfactory Sensory Cilias,Olfactory Sensory Neuron,Receptor Cell, Olfactory,Receptor Cells, Olfactory,Receptor Neuron, Olfactory,Receptor Neurons, Olfactory,Sensory Cell, Olfactory,Sensory Cells, Olfactory,Sensory Cilia, Olfactory,Sensory Cilias, Olfactory,Sensory Neuron, Olfactory,Sensory Neurons, Olfactory |
|
| D018345 |
Mice, Knockout |
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. |
Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out |
|