An investigation of maximal isometric cylindrical grasping actions of the hand is reported. A dynamometer is described which allows simultaneous measurement of both the normal forces and the tangential shear forces imposed by each of the three phalangeal segments of a finger during a test. Seventeen subjects were tested, grasping cylinders 31-116 mm in diameter. Normal grasp forces decreased significantly as cylinder size increased, while with large diameters, shear forces moved the skin towards the finger tip. In all cases the distal segments of the fingers imposed forces significantly larger than those of the middle and proximal segments. The mean contributions of fingers from index to little were: 30, 30, 22 and 18%, proportions that did not vary significantly for the range of grasp diameters. Forces acting during grasping activities are reported in greater detail, for a wider range of hand gripping postures, than previously available. These data are useful in the design of hand operated controls or in the prediction of tendon and joint forces in vivo for the design of implants.