Different intermediate-sized filaments distinguished by immunofluorescence microscopy. 1978

W W Franke, and E Schmid, and M Osborn, and K Weber

The major protein of intermediate-sized filaments in mouse 3T3 cells, for which the name vimentin is proposed, has a molecular weight of 57,000. Antibodies against vimentin and antibodies against prekeratin have been used in parallel in immunofluorescence microscopy on a variety of cultured cells as well as on frozen tissue sections. Both antibodies decorate extended wavy arrays of filaments that are different from microfilaments and microtubules. Intermediate filament bundles decorated by antibodies against prekeratin are predominant in many epithelial cells, including epithelia-derived tumor cells, and are not decorated by antibodies to vimentin. In contrast, intermediate filaments decorated by antibodies against vimentin are widespread among nonmuscle cells of mesenchymal origin, including transformed cells, and also occur in other cells. Perinuclear whorls of aggregates of intermediate filaments induced by prolonged treatment with Colcemid generally show strong decoration with antibodies against vimentin. No significant reaction with either antiserum has been observed in muscle structures or in brain nerve tissue. These observations show that intermediate filaments with similar ultrastructure and solubility characteristics can be distinguished immunologically.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011498 Protein Precursors Precursors, Protein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial

Related Publications

W W Franke, and E Schmid, and M Osborn, and K Weber
October 1982, Experimental eye research,
W W Franke, and E Schmid, and M Osborn, and K Weber
July 1978, Virchows Archiv. B, Cell pathology,
W W Franke, and E Schmid, and M Osborn, and K Weber
November 1984, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
W W Franke, and E Schmid, and M Osborn, and K Weber
October 1984, The Journal of cell biology,
W W Franke, and E Schmid, and M Osborn, and K Weber
November 1981, The Journal of clinical investigation,
W W Franke, and E Schmid, and M Osborn, and K Weber
January 1982, Pathology, research and practice,
W W Franke, and E Schmid, and M Osborn, and K Weber
September 1968, The Journal of cell biology,
W W Franke, and E Schmid, and M Osborn, and K Weber
January 2004, Journal of molecular biology,
W W Franke, and E Schmid, and M Osborn, and K Weber
May 1982, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!