Cultured human amniotic fluid cells characterized with antibodies against intermediate filaments in indirect immunofluorescence microscopy. 1981

I Virtanen, and H von Koskull, and V P Lehto, and T Vartio, and P Aula

Cells cultured from second trimester human amniotic fluid were characterized in indirect immunofluorescence (IIF) microscopy using specific antibodies against the subunit proteins of different types of cytoskeletal intermediate filaments. Most of the amniotic fluid cell cultures contained only epithelial cells as indicated by the positive keratin-fluorescence in IIF. Five distinct types of keratin-positive cells could be characterized. A dominating cell type (E-1) in most cultures were rapidly proliferating epithelial cells, previously called amniotic fluid cells (AF-cells). These cells showed a fibrillar cytoplasmic fluorescence both with keratin antibodies and with antibodies against vimentin, the fibroblast type of intermediate filament protein. E-1 cells did not show the typical cell-to-cell arrangement of keratin fibrils between the adjacent cells, a characteristic previously found in most cultured epithelial cells. Most of the cultures also contained large epitheloid cells (E-2), showing a fine fibrillar cytoplasmic organization of both keratin- and vimentin filaments, clearly different from that seen in E-1 cells. Several cultures contained two additional epithelial cells both showing the typical cell-to-cell arrangement of keratin fibrils (E-3 and E-4). These two cell types could be distinguished because of their distinct difference in size. E-4 cells typically grew as small cell islands among other epitheloid cells. Amniotic fluid cell cultures occasionally contained also large multinucleated cells (E-5), which appeared to contain large amount of fibrillar keratin. Fibroblastic cells, identified by their decoration only with antibodies against vimentin, were rarely found in amniotic fluid cell cultures. Interestingly, in such cultures some cells with a fibroblastoid appearance were identified as epithelial cells on the basis of the positive keratin-fluorescence. The results show the suitability of IIF with cytoskeletal antibodies in characterization of heterogenous cell populations and indicate that normal amniotic fluid cell cultures mostly contain epithelial cells.

UI MeSH Term Description Entries
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005260 Female Females
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000653 Amniotic Fluid A clear, yellowish liquid that envelopes the FETUS inside the sac of AMNION. In the first trimester, it is likely a transudate of maternal or fetal plasma. In the second trimester, amniotic fluid derives primarily from fetal lung and kidney. Cells or substances in this fluid can be removed for prenatal diagnostic tests (AMNIOCENTESIS). Amniotic Fluid Index,Amniotic Fluid Indices,Amniotic Fluids,Fluid Index, Amniotic,Fluid Indices, Amniotic,Fluid, Amniotic,Fluids, Amniotic,Index, Amniotic Fluid,Indices, Amniotic Fluid

Related Publications

I Virtanen, and H von Koskull, and V P Lehto, and T Vartio, and P Aula
January 1998, Methods in cell biology,
I Virtanen, and H von Koskull, and V P Lehto, and T Vartio, and P Aula
January 1984, Acta cytologica,
I Virtanen, and H von Koskull, and V P Lehto, and T Vartio, and P Aula
August 1980, Proceedings of the National Academy of Sciences of the United States of America,
I Virtanen, and H von Koskull, and V P Lehto, and T Vartio, and P Aula
October 1978, Proceedings of the National Academy of Sciences of the United States of America,
I Virtanen, and H von Koskull, and V P Lehto, and T Vartio, and P Aula
August 1980, The Journal of investigative dermatology,
I Virtanen, and H von Koskull, and V P Lehto, and T Vartio, and P Aula
January 1966, Rivista di biologia,
I Virtanen, and H von Koskull, and V P Lehto, and T Vartio, and P Aula
January 1979, Neuropathology and applied neurobiology,
I Virtanen, and H von Koskull, and V P Lehto, and T Vartio, and P Aula
February 1988, Investigative ophthalmology & visual science,
I Virtanen, and H von Koskull, and V P Lehto, and T Vartio, and P Aula
April 1981, Proceedings of the National Academy of Sciences of the United States of America,
I Virtanen, and H von Koskull, and V P Lehto, and T Vartio, and P Aula
January 1980, Neuropathology and applied neurobiology,
Copied contents to your clipboard!