Amino acid sequence homology applied to the prediction of protein secondary structures, and joint prediction with existing methods. 1986

K Nishikawa, and T Ooi

The assumption that homologous segments in different proteins may share a similar conformation is applied to the prediction of secondary structures in proteins. Sequences homologous to a target protein are searched, without allowing any gap, and compared against a number of reference proteins of known three-dimensional structure, and then a conformational state (alpha, beta or coil) for each residue of the protein is predicted by looking at the secondary structure of corresponding homologous segments. This prediction is done in a statistical rather than 'deterministic' way, by assigning the most probable conformation state among homologous data to each residue site of a target protein. A test application for 22 sample proteins yields 60% correctness on the average, a better value in comparison with two other existing methods. Joint prediction combining three methods into one is shown to increase the reliability up to 70%, when only the regions identically predicted with the three methods are taken into account. Application of the present method to 10 proteins of unknown structure is demonstrated.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014598 Uteroglobin A steroid-inducible protein that was originally identified in uterine fluid. It is a secreted homodimeric protein with identical 70-amino acid subunits that are joined in an antiparallel orientation by two disulfide bridges. A variety of activities are associated with uteroglobin including the sequestering of hydrophobic ligands and the inhibition of SECRETORY PHOSPHOLIPASE A2. Blastokinin,Clara Cell Secretory Protein,Clara Cell-Specific Protein,Secretoglobin, Family 1A, Member 1,Clara Cell Specific Protein

Related Publications

K Nishikawa, and T Ooi
August 1976, Biochimica et biophysica acta,
K Nishikawa, and T Ooi
February 1996, Journal of protein chemistry,
K Nishikawa, and T Ooi
March 1979, Journal of theoretical biology,
K Nishikawa, and T Ooi
June 2004, Proceedings of the National Academy of Sciences of the United States of America,
K Nishikawa, and T Ooi
April 1982, International journal of peptide and protein research,
K Nishikawa, and T Ooi
November 1986, Anti-cancer drug design,
K Nishikawa, and T Ooi
January 1978, Nature,
K Nishikawa, and T Ooi
January 1978, Biochemical Society transactions,
K Nishikawa, and T Ooi
August 1984, The Biochemical journal,
Copied contents to your clipboard!