Comparative pharmacokinetics of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes. 1986

A Rahman, and D Carmichael, and M Harris, and J K Roh

The comparative pharmacokinetics of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes was evaluated in rats at a dose of 6 mg/kg i.v. Doxorubicin was entrapped in cardiolipin liposomes by using 11.2 mumol of drug, 5.6 mumol of cardiolipin, 28.5 mumol of phosphatidylcholine, 19.5 mumol of cholesterol, and 11.1 mumol of stearylamine. The peak plasma concentration with free doxorubicin at 5 min was 1.7 micrograms/ml which was reduced to 0.3 micrograms/ml by 1 h. With cardiolipin liposomes, the peak plasma concentration of doxorubicin achieved at 5 min was 20.9 micrograms/ml. The plasma levels of doxorubicin decreased gradually and by 1 h the drug concentration in plasma was 10 micrograms/ml. The plasma levels of free doxorubicin and doxorubicin entrapped in liposomes were fitted to a 3-compartment computer model. The terminal half-life with free doxorubicin in plasma was 17.3 h whereas it was 69.3 h with drug entrapped in liposomes. The area under the plasma concentration curve with liposomal doxorubicin was 81.4 micrograms X h X ml-1 compared to 1.95 micrograms X h X ml-1 observed with free doxorubicin. The steady state volume of distribution with free doxorubicin was about 23-fold higher than liposomal doxorubicin. The terminal half-life with free doxorubicin in cardiac tissue was 17.9 h compared to 12.6 h with drug encapsulated in liposomes. The terminal half-lives in liver and spleen following administration of liposomal doxorubicin were 15- and 2.3-fold higher, respectively, compared to free drug; furthermore, the concentration X time values of liposomal doxorubicin in liver were 26-fold higher and in spleen 6-fold higher than the free drug. Free doxorubicin and doxorubicin entrapped in liposomes demonstrated 17 and 20% excretion in bile of the injected dose, respectively, in rats. The present studies demonstrate that liposomal encapsulation of doxorubicin significantly alters its pharmacokinetics in plasma and tissues compared to free drug.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008297 Male Males
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D002308 Cardiolipins Acidic phospholipids composed of two molecules of phosphatidic acid covalently linked to a molecule of glycerol. They occur primarily in mitochondrial inner membranes and in bacterial plasma membranes. They are the main antigenic components of the Wassermann-type antigen that is used in nontreponemal SYPHILIS SERODIAGNOSIS. Cardiolipin,Diphosphatidylglycerol,Diphosphatidylglycerols
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001646 Bile An emulsifying agent produced in the LIVER and secreted into the DUODENUM. Its composition includes BILE ACIDS AND SALTS; CHOLESTEROL; and ELECTROLYTES. It aids DIGESTION of fats in the duodenum. Biliary Sludge,Sludge, Biliary
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A Rahman, and D Carmichael, and M Harris, and J K Roh
January 1986, Cancer chemotherapy and pharmacology,
A Rahman, and D Carmichael, and M Harris, and J K Roh
September 1986, British journal of cancer,
A Rahman, and D Carmichael, and M Harris, and J K Roh
January 1986, Cancer chemotherapy and pharmacology,
A Rahman, and D Carmichael, and M Harris, and J K Roh
February 1985, Cancer research,
A Rahman, and D Carmichael, and M Harris, and J K Roh
April 1989, American journal of obstetrics and gynecology,
A Rahman, and D Carmichael, and M Harris, and J K Roh
January 1990, Cancer chemotherapy and pharmacology,
A Rahman, and D Carmichael, and M Harris, and J K Roh
March 1990, Biochimica et biophysica acta,
A Rahman, and D Carmichael, and M Harris, and J K Roh
January 2024, Frontiers in veterinary science,
Copied contents to your clipboard!