Pharmacological, toxicological, and therapeutic evaluation in mice of doxorubicin entrapped in cardiolipin liposomes. 1985

A Rahman, and G White, and N More, and P S Schein

Doxorubicin possesses high affinity for binding to cardiolipin. We have utilized these properties in preparing stable liposomes of doxorubicin and cardiolipin with a net positive charge. Doxorubicin liposomes were formed by using 11.2 mumol of drug, 5.6 mumol of cardiolipin, 28.5 mumol of phosphatidylcholine, 19.5 mumol of cholesterol, and 11.1 mumol of stearylamine. These liposomes were sonicated for 90 min at 37 degrees followed by extensive dialysis against buffer. The pharmacological, toxicological, and therapeutic effects of doxorubicin entrapped in cardiolipin liposomes were compared with those of free doxorubicin in mice. At a dose of 4 mg/kg i.v., the peak cardiac concentration was achieved in 30 min following free doxorubicin administration, the value being 8.1 micrograms/g. The peak cardiac concentration with doxorubicin in cardiolipin liposomes was obtained at 5 min with a value of 2.8 micrograms/g of tissue. The cardiac concentration X time values for free doxorubicin for the 24-hr period of observation were 55.1 micrograms X hr/g, whereas it was only 7.8 micrograms X hr/g with the drug entrapped in cardiolipin liposomes. Compared to free drug, the liposomal entrapped doxorubicin significantly reduced the histopathological lesions in cardiac tissue of mice at a dose of 15 mg/kg as determined by electron microscopy. The nadir of peripheral white blood cell counts in mice with free drug, 6 mg/kg, was observed on Day 3 which was 50% of control, whereas with liposomal encapsulated drug it was reduced only 23% on Day 7. Doxorubicin in cardiolipin liposomes demonstrated enhanced chemotherapeutic potential against murine ascitic P388 leukemia with a 144% increased life span compared to 55% increased life span with free drug at a dose of 7.5 mg/kg on Days 1, 3, and 7. We conclude that doxorubicin liposomes developed in these studies possess improved therapeutic action as demonstrated by their ability to reduce the toxicity of the drug substantially.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007941 Leukemia P388 An experimental lymphocytic leukemia originally induced in DBA/2 mice by painting with methylcholanthrene. P388D(1) Leukemia,P388, Leukemia
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow

Related Publications

A Rahman, and G White, and N More, and P S Schein
January 1986, Cancer chemotherapy and pharmacology,
A Rahman, and G White, and N More, and P S Schein
May 1986, Cancer research,
A Rahman, and G White, and N More, and P S Schein
July 1996, British journal of cancer,
A Rahman, and G White, and N More, and P S Schein
September 1986, British journal of cancer,
A Rahman, and G White, and N More, and P S Schein
January 1986, Cancer chemotherapy and pharmacology,
A Rahman, and G White, and N More, and P S Schein
April 1989, American journal of obstetrics and gynecology,
A Rahman, and G White, and N More, and P S Schein
January 1990, Cancer chemotherapy and pharmacology,
A Rahman, and G White, and N More, and P S Schein
March 1990, Biochimica et biophysica acta,
Copied contents to your clipboard!