Tracking Ca2+ Dynamics in NOD Mouse Islets During Spontaneous Diabetes Development. 2023

Sandra Postić, and Johannes Pfabe, and Srdjan Sarikas, and Barbara Ehall, and Thomas Pieber, and Dean Korošak, and Marjan Slak Rupnik, and Ya-Chi Huang
Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.

The mechanisms accounting for the functional changes of α- and β-cells over the course of type 1 diabetes (T1D) development are largely unknown. Permitted by our established technology of high spatiotemporal resolution imaging of cytosolic Ca2+ ([Ca2+]c) dynamics on fresh pancreas tissue slices, we tracked the [Ca2+]c dynamic changes, as the assessment of function, in islet α- and β-cells of female nonobese diabetic (NOD) mice during the development of spontaneous diabetes. We showed that, during the phases of islet inflammation, 8 mmol/L glucose-induced synchronized short [Ca2+]c events in β-cells were diminished, whereas long [Ca2+]c events were gradually more triggerable at substimulatory 4 and 6 mmol/L glucose. In the islet destruction phase, the synchronized short [Ca2+]c events in a subset of β-cells resumed at high glucose condition, while the long [Ca2+]c events were significantly elevated already at substimulatory glucose concentrations. In the α-cells, the glucose sensitivity of the [Ca2+]c events persisted throughout the course of T1D development. At the late islet destruction phase, the α-cell [Ca2+]c events exhibited patterns of synchronicity. Our work has uncovered windows of functional recovery in β-cells and potential α-cells functional synchronization in NOD mice over the course of T1D development. In NOD mice β-cells, 8 mmol/L glucose-induced synchronized short [Ca2+]c events diminish in the early phases of islet inflammation, and long Ca2+ events became more sensitive to substimulatory 4 and 6 mmol/L glucose. In the late islet destruction phase, the synchronized short [Ca2+]c events in a subset of β-cells resumed at 8 mmol/L glucose, while the long Ca2+ events were significantly elevated at substimulatory glucose concentrations. In the α-cells, the glucose sensitivity of the [Ca2+]c events persisted throughout the course of type 1 diabetes development. α-Cell [Ca2+]c events occasionally synchronize in the islets with severe β-cell destruction.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D005260 Female Females
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016688 Mice, Inbred NOD A strain of non-obese diabetic mice developed in Japan that has been widely studied as a model for T-cell-dependent autoimmune insulin-dependent diabetes mellitus in which insulitis is a major histopathologic feature, and in which genetic susceptibility is strongly MHC-linked. Non-Obese Diabetic Mice,Mice, NOD,Mouse, Inbred NOD,Mouse, NOD,Non-Obese Diabetic Mouse,Nonobese Diabetic Mice,Nonobese Diabetic Mouse,Diabetic Mice, Non-Obese,Diabetic Mice, Nonobese,Diabetic Mouse, Non-Obese,Diabetic Mouse, Nonobese,Inbred NOD Mice,Inbred NOD Mouse,Mice, Non-Obese Diabetic,Mice, Nonobese Diabetic,Mouse, Non-Obese Diabetic,Mouse, Nonobese Diabetic,NOD Mice,NOD Mice, Inbred,NOD Mouse,NOD Mouse, Inbred,Non Obese Diabetic Mice,Non Obese Diabetic Mouse
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Sandra Postić, and Johannes Pfabe, and Srdjan Sarikas, and Barbara Ehall, and Thomas Pieber, and Dean Korošak, and Marjan Slak Rupnik, and Ya-Chi Huang
August 2003, Journal of autoimmunity,
Sandra Postić, and Johannes Pfabe, and Srdjan Sarikas, and Barbara Ehall, and Thomas Pieber, and Dean Korošak, and Marjan Slak Rupnik, and Ya-Chi Huang
January 2002, The Histochemical journal,
Sandra Postić, and Johannes Pfabe, and Srdjan Sarikas, and Barbara Ehall, and Thomas Pieber, and Dean Korošak, and Marjan Slak Rupnik, and Ya-Chi Huang
November 2003, Annals of the New York Academy of Sciences,
Sandra Postić, and Johannes Pfabe, and Srdjan Sarikas, and Barbara Ehall, and Thomas Pieber, and Dean Korošak, and Marjan Slak Rupnik, and Ya-Chi Huang
January 2002, Annals of clinical and laboratory science,
Sandra Postić, and Johannes Pfabe, and Srdjan Sarikas, and Barbara Ehall, and Thomas Pieber, and Dean Korošak, and Marjan Slak Rupnik, and Ya-Chi Huang
March 2007, Autoimmunity,
Sandra Postić, and Johannes Pfabe, and Srdjan Sarikas, and Barbara Ehall, and Thomas Pieber, and Dean Korošak, and Marjan Slak Rupnik, and Ya-Chi Huang
June 2000, Nature neuroscience,
Sandra Postić, and Johannes Pfabe, and Srdjan Sarikas, and Barbara Ehall, and Thomas Pieber, and Dean Korošak, and Marjan Slak Rupnik, and Ya-Chi Huang
November 2003, Annals of the New York Academy of Sciences,
Sandra Postić, and Johannes Pfabe, and Srdjan Sarikas, and Barbara Ehall, and Thomas Pieber, and Dean Korošak, and Marjan Slak Rupnik, and Ya-Chi Huang
November 1998, Diabetologia,
Sandra Postić, and Johannes Pfabe, and Srdjan Sarikas, and Barbara Ehall, and Thomas Pieber, and Dean Korošak, and Marjan Slak Rupnik, and Ya-Chi Huang
June 1997, Research in immunology,
Sandra Postić, and Johannes Pfabe, and Srdjan Sarikas, and Barbara Ehall, and Thomas Pieber, and Dean Korošak, and Marjan Slak Rupnik, and Ya-Chi Huang
January 2014, Xenotransplantation,
Copied contents to your clipboard!