Biosonar signals and cerebellar auditory neurons of the mustached bat. 1986

J Horikawa, and N Suga

In the vermis (VIp, VIIa, VIIp, and VIII), crus, and paraflocculus of unanesthetized mustached bats Pteronotus parnellii parnellii, responses of single neurons to acoustic stimuli were studied. The stimuli delivered were constant-frequency (CF) tones, frequency-modulated (FM) sounds, noise bursts (NBs), and sounds similar to the orientation sounds (pulses) of the species and echoes. The effect of ablation of the cerebellar cortex on vocalization was also investigated to explore whether the cerebellum was involved in sound emission. In the cerebellum of the mustached bat, auditory neurons are predominantly tuned to frequencies within the bands between 23 and 30, 55 and 63, or 85 and 94 kHz, which are found in the first, second, and third harmonics of bat's biosonar signals, respectively. The first harmonic is represented in the paraflocculus. The second harmonic is represented in vermis VIp and VIIa and crus I and IIa. The third harmonic is mainly represented in vermis VIIp and crus IIp. Different lobules represent different frequencies, but there is no systematic tonotopic representation in each lobule. The resting frequency of the CF component of the second harmonic (CF2) of the pulse differs among bats. The majority of auditory neurons in vermis VIp and VIIa and crus IIa are tuned to the CF2 frequency of the bat's own pulse. The frequency-tuning curves of cerebellar neurons are broader than those of peripheral neurons, reflected in significantly lower quality factors of Q-10, -30, and -50 dBs. In vermis VIp and VIIa, there are tiny clusters of FM-FM and CF/CF combination-sensitive neurons. They show strong facilitation of responses when two FM or CF sounds are delivered with particular relationships in the frequency, amplitude, and time domains. Because the clusters of these combination-sensitive neurons in the cerebellum are so small, we found no sign of a systematic representation of certain acoustic parameters, unlike that found in the auditory cortex. In vermis VIp and VIIa, there is a large cluster of NB-sensitive neurons that are more sensitive to NBs than to CF tones. The wider the bandwidth of the NBs, the better are the responses of these NB-sensitive neurons. The ablation of the vermis (VIp, VIIa, and VIIp), crus, and paraflocculus increases the variation of the CF frequency of the pulse. The ablation of the crus and paraflocculus causes a clear increase in the variation of CF frequency. The ablation of vermis (VIp, VIIa, and VIIp) has only a small effect on the variation. Any of the above ablations has little effect on the repetition rate of the pulse emission and the duration of pulses.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D010898 Pitch Perception A dimension of auditory sensation varying with cycles per second of the sound stimulus. Perception, Pitch,Perceptions, Pitch,Pitch Perceptions
D011571 Psychoacoustics The science pertaining to the interrelationship of psychologic phenomena and the individual's response to the physical properties of sound. Psychoacoustic
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002525 Cerebellar Cortex The superficial GRAY MATTER of the CEREBELLUM. It consists of two main layers, the stratum moleculare and the stratum granulosum. Cortex Cerebelli,Cerebelli, Cortex,Cerebellus, Cortex,Cortex Cerebellus,Cortex, Cerebellar
D002685 Chiroptera Order of mammals whose members are adapted for flight. It includes bats, flying foxes, and fruit bats. Bats,Flying Foxes,Horseshoe Bats,Pteropodidae,Pteropus,Rhinolophus,Rousettus,Bat, Horseshoe,Bats, Horseshoe,Foxes, Flying,Horseshoe Bat
D004455 Echolocation An auditory orientation mechanism involving the emission of high frequency sounds which are reflected back to the emitter (animal). Echolocations
D005072 Evoked Potentials, Auditory The electric response evoked in the CEREBRAL CORTEX by ACOUSTIC STIMULATION or stimulation of the AUDITORY PATHWAYS. Auditory Evoked Potentials,Auditory Evoked Response,Auditory Evoked Potential,Auditory Evoked Responses,Evoked Potential, Auditory,Evoked Response, Auditory,Evoked Responses, Auditory,Potentials, Auditory Evoked
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001306 Auditory Pathways NEURAL PATHWAYS and connections within the CENTRAL NERVOUS SYSTEM, beginning at the hair cells of the ORGAN OF CORTI, continuing along the eighth cranial nerve, and terminating at the AUDITORY CORTEX. Auditory Pathway,Pathway, Auditory,Pathways, Auditory

Related Publications

J Horikawa, and N Suga
February 2021, The Journal of the Acoustical Society of America,
J Horikawa, and N Suga
March 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J Horikawa, and N Suga
February 1988, Journal of neurophysiology,
J Horikawa, and N Suga
January 1994, Brain, behavior and evolution,
J Horikawa, and N Suga
January 1993, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
Copied contents to your clipboard!