Energy coupling to the transport of inorganic phosphate in Escherichia coli K12. 1979

H Rosenberg, and R G Gerdes, and F M Harold

The nature of the energy source for phosphate transport was studied in strains of Escherichia coli in which either one of the two major systems (PIT, PST) for phosphate transport was present. In the PIT system, phosphate transport is coupled to the proton-motive force. The energy source for the PST system appears to be phosphate-bond energy, as has been found in other systems involving binding proteins. High concentration gradients of phosphate (between 100 and 500) are established by both systems.

UI MeSH Term Description Entries
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D000332 Aerobiosis Life or metabolic reactions occurring in an environment containing oxygen. Aerobioses
D000693 Anaerobiosis The complete absence, or (loosely) the paucity, of gaseous or dissolved elemental oxygen in a given place or environment. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Anaerobic Metabolism,Anaerobic Metabolisms,Anaerobioses,Metabolism, Anaerobic,Metabolisms, Anaerobic
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

H Rosenberg, and R G Gerdes, and F M Harold
March 1976, The Biochemical journal,
H Rosenberg, and R G Gerdes, and F M Harold
October 1973, Journal of bacteriology,
H Rosenberg, and R G Gerdes, and F M Harold
January 1990, Research in microbiology,
H Rosenberg, and R G Gerdes, and F M Harold
September 1975, Journal of bacteriology,
H Rosenberg, and R G Gerdes, and F M Harold
October 1980, Journal of bacteriology,
H Rosenberg, and R G Gerdes, and F M Harold
January 1970, Proceedings of the National Academy of Sciences of the United States of America,
H Rosenberg, and R G Gerdes, and F M Harold
February 1994, Biochemistry,
H Rosenberg, and R G Gerdes, and F M Harold
February 1977, The Journal of biological chemistry,
H Rosenberg, and R G Gerdes, and F M Harold
June 1973, The Journal of biological chemistry,
H Rosenberg, and R G Gerdes, and F M Harold
September 1972, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!