Effect of arsenate on inorganic phosphate transport in Escherichia coli. 1980

G R Willsky, and M H Malamy

The effect of arsenate on strains dependent on the two major inorganic phosphate (Pi) transport systems in Escherichia coli was examined in cells grown in 1 mM phosphate medium. The development of arsenate-resistant Pi uptake in a strain dependent upon the Pst (phosphate specific transport) system was examined. The growth rate of Pst-dependent cells in arsenate-containing medium was a function of the arsenate-to-Pi ratio. Growth in arsenate-containing medium was not due to detoxification of the arsenate. Kinetic studies revealed that cells grown with a 10-fold excess of arsenate to Pi have almost a twofold increase in capacity (Vmax) for Pi, but maintained the same affinity (Km). Pi accumulation in the Pst-dependent strain was still sensitive to changes in the arsenate-to-Pi ratio, and a Ki (arsenate) for Pi transport of 39 microM arsenate was determined. The Pst-dependent strain did not accumulate radioactive arsenate, and showed only a transient decrease in intracellular adenosine triphosphate levels after arsenate was added to the medium. The Pi transport-dependent strain ceased growth in arsenate-containing media. This strain accumulated 74As-arsenate, and intracellular adenosine triphosphate pools were almost completely depleted after the addition of arsenate to the medium. Arsenate accumulation required a metabolizable energy source and was inhibited by N-ethylmaleimide. Previously accumulated arsenate could exchange with arsenate or Pi in the medium.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001149 Arsenates Inorganic or organic salts and esters of arsenic acid.
D001151 Arsenic A shiny gray element with atomic symbol As, atomic number 33, and atomic weight 75. It occurs throughout the universe, mostly in the form of metallic arsenides. Most forms are toxic. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), arsenic and certain arsenic compounds have been listed as known carcinogens. (From Merck Index, 11th ed) Arsenic-75,Arsenic 75
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

G R Willsky, and M H Malamy
July 1970, Biochemical and biophysical research communications,
G R Willsky, and M H Malamy
January 1984, Progress in clinical and biological research,
G R Willsky, and M H Malamy
January 1979, The Biochemical journal,
G R Willsky, and M H Malamy
August 1971, Biochimica et biophysica acta,
G R Willsky, and M H Malamy
November 1975, Journal of general microbiology,
G R Willsky, and M H Malamy
February 1981, Journal of bacteriology,
G R Willsky, and M H Malamy
January 1989, Izvestiia Akademii nauk SSSR. Seriia biologicheskaia,
G R Willsky, and M H Malamy
January 2001, Bioorganicheskaia khimiia,
Copied contents to your clipboard!