Network-wide thermodynamic constraints shape NAD(P)H cofactor specificity of biochemical reactions. 2023

Pavlos Stephanos Bekiaris, and Steffen Klamt
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, Magdeburg, Germany.

The ubiquitous coexistence of the redox cofactors NADH and NADPH is widely considered to facilitate an efficient operation of cellular redox metabolism. However, it remains unclear what shapes the NAD(P)H specificity of specific redox reactions. Here, we present a computational framework to analyze the effect of redox cofactor swaps on the maximal thermodynamic potential of a metabolic network and use it to investigate key aspects of redox cofactor redundancy in Escherichia coli. As one major result, our analysis suggests that evolved NAD(P)H specificities are largely shaped by metabolic network structure and associated thermodynamic constraints enabling thermodynamic driving forces that are close or even identical to the theoretical optimum and significantly higher compared to random specificities. Furthermore, while redundancy of NAD(P)H is clearly beneficial for thermodynamic driving forces, a third redox cofactor would require a low standard redox potential to be advantageous. Our approach also predicts trends of redox-cofactor concentration ratios and could facilitate the design of optimal redox cofactor specificities.

UI MeSH Term Description Entries
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

Pavlos Stephanos Bekiaris, and Steffen Klamt
July 2013, The FEBS journal,
Pavlos Stephanos Bekiaris, and Steffen Klamt
January 2012, Methods in molecular biology (Clifton, N.J.),
Pavlos Stephanos Bekiaris, and Steffen Klamt
June 2004, Journal of theoretical biology,
Pavlos Stephanos Bekiaris, and Steffen Klamt
January 2014, Methods in molecular biology (Clifton, N.J.),
Pavlos Stephanos Bekiaris, and Steffen Klamt
January 2014, Computational and structural biotechnology journal,
Pavlos Stephanos Bekiaris, and Steffen Klamt
July 2023, Nutrients,
Pavlos Stephanos Bekiaris, and Steffen Klamt
January 2019, Physical chemistry chemical physics : PCCP,
Pavlos Stephanos Bekiaris, and Steffen Klamt
November 1995, FEBS letters,
Copied contents to your clipboard!