Changes in bleb formation following hyperthermia treatment of Chinese hamster ovary cells. 1986

M Kapiszewska, and L E Hopwood

Chinese hamster ovary cells in suspension cultures were heated for various times at 41.5, 43.5, and 45.5 degrees C, and quantitative determinations of microblebbing and macroblebbing of the cell membrane were performed for cells maintained at 4, 25, and 37 degrees C after hyperthermia. The percentage of cells with blebs following heating at 45.5 degrees C was dependent upon the duration of heating with increases from 40% for 5 min to 90% for 30 min. Cells exposed to lower temperatures exhibited less blebbing which was not quantifiable. The changes in bleb formation following 45.5 degrees C were dependent upon the posthyperthermia temperature: a slight decrease of macroblebbing at 25 degrees C, a decrease to 50% by 2 h at 37 degrees C, and a sharp decrease of macroblebbing to less than 10% by 1 h at 4 degrees C. Microblebbing increased slightly at 37 degrees C. When cells were transferred rapidly from the 4 degrees C posthyperthermia incubation to 37 degrees C, the bleb formation percentages returned rapidly to the higher levels which existed before posthyperthermia incubation at the lower temperatures. Gamma irradiation of 20 and 50 Gy produced only a small increase in microblebbing at longer periods (5 to 6 h) but no increase in macroblebbing. The survival of cells heated for 20 min at 45.5 degrees C was decreased 40% for suspension cells maintained at 4 degrees C for 2 to 3 h before incubation at 37 degrees C for colony formation compared to cells immediately incubated at 37 degrees C after heating. The survival of cells maintained at 25 degrees C after heating was not altered in comparison.

UI MeSH Term Description Entries
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D005260 Female Females
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

M Kapiszewska, and L E Hopwood
June 1987, Radiation research,
M Kapiszewska, and L E Hopwood
November 1982, Cancer research,
M Kapiszewska, and L E Hopwood
November 1994, Mutation research,
M Kapiszewska, and L E Hopwood
October 1987, Cancer letters,
M Kapiszewska, and L E Hopwood
October 1981, Cancer research,
M Kapiszewska, and L E Hopwood
January 1985, Cancer research,
M Kapiszewska, and L E Hopwood
February 1978, Cancer research,
M Kapiszewska, and L E Hopwood
January 1987, Methods in enzymology,
Copied contents to your clipboard!