Receptor-mediated uptake of asialoglycoprotein by the primate liver initiates both lysosomal and transcellular pathways. 1986

J M Schiff, and S L Huling, and A L Jones

The degradation of asialoglycoproteins in hepatocytes has been well described in several animal models, but no direct evidence has yet been obtained for asialoglycoprotein processing in the primate liver. A double radiolabeling strategy was employed in the experiments described in this paper to evaluate the fate of asialoorosomucoid in the squirrel monkey. Intravenously injected asialoorosomucoid was taken up by the liver with a half-time of 1 min. Electron microscopic autoradiography showed progression of asialoorosomucoid from the hepatocyte plasma membrane through vesicles to multivesicular bodies and then to secondary lysosomes near the Golgi-rich area of the cell. Over 75% of the grains initially associated with clear endocytic compartments after injection had moved to these later organelles within 20 min. Following degradation of asialoorosomucoid labeled with the Bolton and Hunter reagent, radiocatabolites were secreted into bile, peaking approximately 47 min after injection. We also found that 7 to 8% of the injected protein entered an alternative pathway which led to resecretion of the ligand at the bile canaliculus. This was considerably more than in rats (1 to 3%), but roughly comparable to the amount in guinea pigs (10 to 17%). Intact asialoorosomucoid peaked in monkey bile approximately 27 min after injection and was 3 to 4 times more concentrated than the initial plasma concentration, indicating receptor-mediated transport. Gel filtration chromatography and polyacrylamide gel analysis of the secreted protein indicated that it had arrived in bile unaltered. Since less than 1% of the autoradiographic grains were localized to nonparenchymal cells, the hepatocyte was identified as the cell type simultaneously responsible for both pathways. We propose that missorting of some of the asialoglycoprotein to bile reflects diffusion within intracellular sorting compartments to areas primarily dedicated to the processing of unrelated ligands, such as those newly synthesized for biliary secretion.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009961 Orosomucoid Acid Seromucoid,Seromucoid,Serum Sialomucin,alpha 1-Acid Glycoprotein,alpha 1-Acid Seromucoid,A(1)-Acid Seromucoid,Acid alpha 1-Glycoprotein,Alpha(1)-Acid Glycoprotein,alpha 1-Acid Glycoprotein (Acute Phase),alpha 1-Glycoprotein Acid,Acid alpha 1 Glycoprotein,Glycoprotein, alpha 1-Acid,Seromucoid, Acid,Seromucoid, alpha 1-Acid,Sialomucin, Serum,alpha 1 Acid Glycoprotein,alpha 1 Acid Seromucoid,alpha 1 Glycoprotein Acid
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005260 Female Females

Related Publications

J M Schiff, and S L Huling, and A L Jones
January 1978, Progress in clinical and biological research,
J M Schiff, and S L Huling, and A L Jones
January 2017, mAbs,
J M Schiff, and S L Huling, and A L Jones
January 1992, FEBS letters,
J M Schiff, and S L Huling, and A L Jones
October 2005, Journal of pharmaceutical sciences,
J M Schiff, and S L Huling, and A L Jones
December 1998, Atherosclerosis,
J M Schiff, and S L Huling, and A L Jones
February 1982, The Journal of biological chemistry,
J M Schiff, and S L Huling, and A L Jones
December 1989, Biochemical Society transactions,
J M Schiff, and S L Huling, and A L Jones
March 1988, Gastroenterology,
Copied contents to your clipboard!